Ограничители импульсного перенапряжения: подключение узип

Ограничители импульсного перенапряжения: подключение узип

Ограничители импульсного перенапряжения: подключение узип
СОДЕРЖАНИЕ
0
5 просмотров
07 января 2021

Конструкция

УЗИП изготавливаются по стандартным размерам в модульном исполнении. Поэтому они легко монтируются на обычную ДИН-рейку, шириной 35 мм. В соответствии с классом защиты, в конструкцию прибора может входить от 1 до 4 модулей. Отработанные секции, выполнившие свою защитную функцию, легко заменяются новыми. Для этого центральная часть корпуса оборудована специальными направляющими под новые модули. Таким образом, замена выполняется быстро, поскольку не требуется отключать провода и демонтировать все устройство.

Основным защитным компонентом служит варистор, представляющий собой разновидность полупроводников. Для его изготовления применяется керамическая смесь и окись цинка. К ним добавляются специальные примеси, создающие уникальные запирающие свойства готового элемента, на котором основан принцип действия всего прибора. Кроме того, каждый модуль отдельно защищен от повышенных токовых нагрузок.

На передней панели имеется окно с дисплеем, где отображается состояние и работоспособность устройства. Подключение проводников осуществляется через клеммы, предназначенные для входа и выхода. Надежность контактов повышается за счет насечек, существенно увеличивающих площадь соприкосновения и снижающих сопротивление самих контактов. Подключая провода, нужно обязательно соблюдать полярность. Во избежание путаницы, каждая клемма промаркирована в соответствии со своим предназначением.

Технические характеристики

При выборе конкретной модели ограничителя перенапряжения обязательно учитываются такие параметры устройства:

  • Время срабатывания – характеризует скорость открытия полупроводникового элемента ограничителя после нарастания напряжения.
  • Рабочее напряжение – определяет величину электрической энергии, которую ОПН может выдерживать без нарушения работоспособности в течении любого промежутка времени.
  • Номинальное повышенное напряжение – значение рабочей величины, которое ОПН способен выдерживать в течении 10 секунд, также нормируется совместно с остаточным напряжением, которое остается в сети.
  • Ток утечки – возникает как результат приложения напряжения к ограничителю перенапряжения и определяется его омическим сопротивлением или параметрами резисторов. В исправном состоянии этот параметр составляет сотые или тысячные доли ампер, перетекающие по рубашке и полупроводнику от источника к проводу заземления.
  • Разрядный ток – величина, образующаяся при импульсных скачках, в зависимости от источника перенапряжения разделяется на атмосферные, электромагнитные и коммутационные импульсы.
  • Устойчивость к току волны перенапряжения – определяет способность сохранять целостность всех элементов конструкции в аварийном режиме.

Причины и последствия импульсных перенапряжений сети

Импульсные перенапряжения представляют угрозу для бытовых электроприборов. Причины данного явления делятся на 2 категории:

  1. Атмосферные перенапряжения (молнии). Разряд попадает в линию электропередач. Затем высокий потенциал следует до розеток потребителей и выводит домашнюю электронику из строя.
  2. Техногенные перенапряжения. Неисправность контура молниезащиты. Пробой изоляции между сетями высокого и низкого напряжения.

Независимо от причины, в квартирных розетках формируется разность потенциалов в несколько тысяч вольт. Импульс длится доли секунды. Но этого достаточно чтобы повредить чувствительные электронные платы, микросхемы и процессоры.

Как работает защитник от перенапряжений

Защитой обеспечиваются устройства, питаемые от шнуров сети 220V, подключенных к разряднику в распределительной коробке. Это касается как фазных, так и нейтральных проводников (в зависимости от выбранного типа защиты).

Общее правило заключается в том, что на одной стороне защитного устройства соединяем фазные проводники и, возможно, нейтральный проводник, а с другой стороны — защитный провод.

Когда напряжение в системе в норме, сопротивление между проводами очень велико, порядка нескольких ГигаОм. Благодаря этому ток не течет через разрядник.

Когда происходит скачок напряжения в сети, ток начинает протекать через ограничитель на землю.

В защитных устройствах класса B основным элементом является искровой промежуток. При нормальной работе сопротивление его очень велико. В случае искрового промежутка это сопротивление является гигантским, поскольку искровой промежуток это фактически разрыв цепи. Когда молния ударяет в элемент электрической установки напрямую, сопротивление искрового промежутка падает почти до нуля благодаря электрической дуге. Из-за появления очень большого электрического потенциала в искровом промежутке между ранее разделенными элементами создается электрическая дуга.

Благодаря этому, например, фазовый провод, в котором имеется большой всплеск напряжения и защитный провод, создают короткое замыкание и большой ток протекает прямо на землю, минуя внутреннюю электрическую установку. После разряда искровой промежуток возвращается в нормальное состояние — то есть разрывает цепь.

Полезное: Электромонтаж проводки в частном деревянном доме

Ограничитель класса C имеет внутри варистор. Варистор представляет собой специфический резистор, который обладает очень высоким сопротивлением при низком электрическом потенциале. Если в системе происходит скачок напряжения из-за разряда, его сопротивление быстро уменьшается вызывая протекание тока на землю и аналогичную ситуацию, как в случае искрового промежутка.

Разница между классом B и классом C заключается в том, что последний способен ограничивать всплески напряжения с меньшим потенциалом, чем прямой удар молнии. Недостатком этого решения является довольно быстрый износ варисторов.

Урок 1. Назначение и принцип действия ОПН

Ограничители перенапряжений нелинейные (ОПН)-электрические аппараты, предназначенные для защиты оборудования систем электроснабжения от коммутационных и грозовых перенапряжений. Основным элементом ОПН является нелинейный резистор – варистор ( varistor, от англ. Vari(able) (Resi)stor – переменное, изменяющееся сопротивление).

Основное отличие материала нелинейных резисторов ограничителей от материала резисторов вентильных разрядников состоит в резко нелинейной вольт-амперной характеристики (ВАХ) и повышенной пропускной способности. Применение в ОПН высоконелинейных резисторов позволило исключить из конструкции аппарата искровые промежутки, что устраняет целый ряд недостатков, присущих вентильным разрядникам.

Основной компонент материала резисторов ОПН – оксид (окись) цинка ZnO. Оксид цинка смешивают с оксидами других металлов – закисью и окисью кобальта, окисью висмута и др. Технология изготовления оксидно-цинковых резисторов весьма сложна и трудоёмка и близка к требованиям при производстве полупроводников – применение химически чистого исходного материала, выполнение требований по чистоте и т. д. Основные операции при изготовлении – перемешивание и измельчение компонентов, формовка ( прессование) и обжиг. Микроструктура варисторов включает в себя кристаллы оксида цинка (полупроводник n – типа) и междукристаллической прослойки ( полупроводник p – типа). Таким образом, варисторы на основе оксида цинка ZnO являются системой последовательно – параллельно включённых p – n переходов. Эти p – n переходы и определяют нелинейные свойства варисторов, то есть нелинейную зависимость величины тока, протекающего через варистор, от приложенного к нему напряжения.

В настоящее время варисторы для ограничителей изготовляются как цилиндрические диски диаметром 28 – 150 мм, высотой 5 – 60 мм (рис 1). На торцевой части дисков методом металлизации наносятся алюминиевые электроды толщиной 0.05-0.30 мм. Боковые поверхности диска покрывают глифталевой эмалью, что повышает пропускную способность при импульсах тока с крутым фронтом.

Рис. 1. Нелинейный резистор – варистор

Диаметр варистора ( точнее – площадь поперечного сечения ) определяет пропускную способность варистора по току, а его высота – параметры по напряжению.

При изготовлении ОПН то или иное количество варисторов соединяют последовательно в так называемую колонку. В зависимости от требуемых характеристик ОПН и его конструкции и имеющихся на предприятии варисторов ограничитель может состоять из одной колонки (состоящей даже из одного варистора) или из ряда колонок, соединённых между собой последовательно/ параллельно.

Для защиты электрооборудования от грозовых или коммутационных перенапряжений ОПН включается параллельно оборудованию (рис. 2 ).

Рис.2

Защитные свойства ОПН объясняются вольт–амперная характеристикой варистора.

Вольт – амперная характеристика конкретного варистора зависит от многих факторов, в том числе от технологии изготовления, рода напряжения – постоянного или переменного, частоты переменного напряжения, параметров импульсов тока, температуры и др.

Типовая вольт- амперная характеристика варистора с наибольшим длительно допустимым напряжением 0.4 кВ в линейном масштабе приведена на рис. 3.

На вольт – амперной характеристике варистора можно выделить три характерных участка: 1) область малых токов; 2) средних токов и 3) больших токов. Область малых токов – это работа варистора под рабочим напряжением, не превышающим наибольшее допустимое рабочее напряжение. В данной области сопротивление варистора весьма значительно. В силу неидеальности варистора сопротивление хотя и велико, но не бесконечно. поэтому через варистор протекает ток, называемый током проводимости. Этот ток мал – десятые доли миллиамперметра.

При возникновении грозовых или коммутационных импульсов перенапряжений в сети варистор переходит в режим средних токов. На границе первой и второй областей происходит перегиб вольт – амперной характеристики, при этом сопротивление варистора резко уменьшается (до долей Ома). Через варистор кратковременно протекает импульс тока, который может достигать десятков тысяч ампер. Варистор поглощает энергию импульса перенапряжения, выделяя затем её в виде тепла, рассеивая в окружающее пространство. Импульс перенапряжения сети “ срезается” (рис. 4).

Рис. 4

В третьей области ( больших токов) сопротивление варистора снова резко увеличивается. Эта область для варистора является аварийной.

Трехфазная установка

В трехфазной схеме увеличивается ширина ограничителя и количество защищаемых соединений. Однако принцип функционирования ограничителя остается неизменным. Наиболее часто используемые трехслойные системные защитные устройства, работающие в системе 4 + 0, что означает присоединение к разряднику следующих линий:

  • 3-фазные провода
  • 1 нейтральный провод

Каждый из проводов подлежащих защите имеет равные права, то есть возможные перенапряжения устраняются путем подачи тока на защитную установку и, как результат, на землю.

Конечно для установок TN-C (установка без отдельного защитного провода) можно приобрести защитные устройства только с 3 защищаемыми разъемами. Затем с нижней стороны подключите ограничитель к полосе PEN (нейтральная защита).

Как подключить УЗИП в частном доме?

Установка УЗИП производится в зависимости от показателя напряжения: 220В (одна фаза) и 380В (три фазы).

Схема подключения может быть направлена на бесперебойность или на безопасность, нужно определить приоритеты. В первом случае может временно отключиться молниезащиты для того, чтобы не допустить перебоя в снабжении потребителей. Во втором же случае недопустимо отключение молниезащиты, даже на несколько секунд, но возможно полное отключение снабжения.

Схема подключения в однофазной сети системы заземления TN-S

При использовании однофазной сети TN-S к УЗИП нужно подключить фазный, нулевой рабочий и нулевой защитный проводник. Фаза и ноль сначала подключаются к соответствующим клеммам, а затем шлейфом к линии оборудования. К защитному проводнику подключается заземляющий проводник. УЗИП устанавливается сразу после вводного автомата. Для облегчения процесса подключения все контакты на устройстве обозначены, поэтому сложностей не должно возникнуть.

Пояснение к схеме: А, В, С – фазы электрической сети, N – рабочий нулевой проводник, PE – защитный нулевой проводник.

Схема подключения в трехфазной сети системы заземления TN-S

Отличительной особенностью трехфазной сети TN-S от однофазной является то, что от источника питания исходит пять проводников, три фазы, рабочий нулевой и защитный нулевой проводники. К клеммам подключается три фазы и нулевой провод. Пятый защитный проводник подключается к корпусу электроприбора и земле, то есть служит некой перемычкой.

Схема подключения в трехфазной сети системы заземления TN-C

В системе подключения заземления TN-C рабочий и защитный проводник объединены в один провод (PEN), это и является главным отличием от заземления TN-S.

  Как подобрать стабилизатор напряжения для частного дома или квартиры?

Система TN-C является более простой и уже довольно устаревшей, и распространена в устаревшем жилом фонде. По современным нормам применяется система заземления TN-C-S, в которой находятся по отдельности нулевой рабочий и нулевой защитный проводники.

Переход на более новую систему необходим для того, чтобы избежать поражения электрическим током обслуживающего персонала, и ситуаций с возникновений пожара. Ну и конечно же в системе TN-C-S лучше защита от резких импульсных перенапряжений.

Во всех трех вариантах подключения при перенапряжении ток направляется на землю через кабель заземления или же через общий защитный провод, что не дает импульсу навредить всей линии и оборудованию.

Установка УЗИП — ограничители импульсного перенапряжения, правильный монтаж и подключение

Ограничители импульсного перенапряжения — скачкообразное напряжение атмосферного происхождения является основной причиной выхода из строя электронного оборудования и простоев производства. Наиболее опасный тип перенапряжения вызван прямыми ударами молнии.

Фактически, молния создает пики тока, которые генерируют перенапряжения в сети электропередачи и передачи данных, последствия которых могут быть чрезвычайно нежелательными и опасными для систем, сооружений и людей. У разрядников для защиты от перенапряжений есть много применений, от защиты дома до коммунальной подстанции.

Они устанавливаются на автоматических выключателях внутри жилого дома, внутри вмонтированных трансформаторов, на полюсных трансформаторах, на столбовых стойках и подстанциях. В данной публикации мы расскажем как правильно подключать ограничители импульсного перенапряжения, и покажем схемы соединения. В частности здесь речь пойдет о конкретном устройстве ОИН-1.

Для чего нужен ОИН-1 и его функциональные возможности

Прибор ограничителя импульсных напряжений в первую очередь нужен для защиты электрической сети переменного тока 380/220v. Скачкообразные, импульсные напряжения, многократно превышающие штатные значения, могут возникать из-за грозовых разрядов.

Кроме этого, действующее сетевое напряжение может изменяться в следствия бросков тока в электросети. Возникают они как правило во время подсоединения к сети либо отключения каких либо мощных электрических устройств.

В схему прибора ОИН-1 включен мощный варистор, выполняющий функции разрядника, которые применялись в устройствах более старшего поколения.

Устройство защиты от импульсных перенапряжений в силовом щитке

В этом варианте прибор подключен к защищаемой электрической цепи по параллельной схеме.

В случае каких либо возникших аварийных ситуаций, когда штатное напряжение начинает периодически «прыгать» до критического уровня, тогда устройство защиты мгновенно сработает.

Принцип действия защиты заключается в следующем. Во время образования в силовой цепи внезапного подъема напряжения, например, от грозового разряда. При этом на варисторе снижается сопротивление, и как следствие возникает короткое замыкание, после чего срабатывает автомат и отключает электрическую цепь. Установленные в этом силовом тракте, после варистора, различные приборы не получат повреждений, благодаря тому, что вовремя сработали ограничители импульсного перенапряжения.

В процессе эксплуатации ОИН-1 он может получить повреждения, чтобы убедится в его исправности, нужно ориентироваться на показание встроенного индикатора. В случае, если индикатор отображается зеленым цветом, то прибор находится в рабочем состоянии, а если индикатор покраснел, тогда устройство защиты подлежит замене.

Область использования

Защитный ограничитель напряжения ОИН-1 очень востребован при монтаже электро сетей, его практически всегда устанавливают в распределительных щитках на входе в помещение. А подключается он в цепь непосредственно перед прибором учета электроэнергии, то есть и сам счетчик будет под защитой от перенапряжения.

Кроме этого, данный прибор используется для защиты от перенапряжений, начиная от жилого дома до коммунальной подстанции. Они устанавливаются на автоматических выключателях внутри жилого помещения, внутри вмонтированных трансформаторов, на полюсных трансформаторах, на столбовых стойках и подстанциях.

Технические параметры

Таблица основных характеристик ОИН-1: Значение
1 Стандартное напряжение 220 В
2 Номинальный разрядный ток 6
3 Максимальный РТ 13
4 Остаточное напряжение 2200
5 Уровень защиты не ниже IР21
6 Температурный режим от -50 до +55
7 Параметры устройства (размеры) 80 × 17,5 × 66,5
8 Вес 0,12 кг
9 Срок службы 3–3,5 года

Защита от импульсного перенапряжения: частный дом с однофазным питанием

Монтаж электропроводки в частном доме, особенно выполненном из древесины и горючих материалов, требует тщательного соблюдения правил электрической безопасности.

Необходимо учесть, что здание может быть запитано по разным схемам заземления:

  • типовой старой TN-C;
  • либо современной, более безопасной TN-S или ее модификациям.

На картинке ниже представлена развернутая схема с защитой комбинированного класса 1 2, которое используется для установки после вводного автоматического выключателя.

Варистор ограничителя перенапряжения встроен в корпус модуля, защищает электрическую схему от прямых или удаленных атмосферных разрядов молний.

Традиционный для всех УЗИП сигнальный флажок имеет два цвета:

  1. зеленое положение свидетельствует об исправности устройства и готовности к работе;
  2. красное — о необходимости замены в случае срабатывания или перегорания.

Такой модуль может применяться во всех системах заземления, а не только TN-S. Он имеет 3 клеммы подключения:

  1. сверху слева L — фазный провод;
  2. сверху справа PE — защитный проводник заземления;
  3. снизу N — нулевой провод.

На очередной схеме показан вариант использования защиты с УЗО. После него создается дополнительная шинка рабочего нуля N1, от которой запитаны все потребители квартиры.

Схема вроде понятна, вопросов не должно возникнуть.

Для дополнительных систем заземления TN-C-S и ТТ предлагаю к изучению и анализу еще две схемы. У них УЗИП монтируется тоже во вводном устройстве.

Цепи подключения счетчика, реле контроля напряжения РКН и УЗО, а также потребители подробно не показываю. Но принцип понятен: используется защитная шина PE.

Отсутствие шины РЕ диктует необходимость подключения УЗИП только между потенциалами фазного провода и PEN. Других вариантов просто нет.

Слева показан способ монтажа защиты для однофазной проводки, а справа — трехфазной.

Импульс перенапряжения снимается по принципу создания искусственного короткого замыкания в питающей цепи.

Защита проводки возложена на:

  • трехполюсный вводной автоматический выключатель;
  • однополюсные и трехполюсные автоматы отходящих линий;
  • устройство защиты от импульсных перенапряжений комбинированного типа 1 2 3.

Учетом электроэнергии занимается трехфазный электросчетчик. После него в цепях рабочего нуля образована дополнительная шинка N1. От нее запитываются все потребители.

Шинки N и РЕ, модуль УЗИП подключены стандартным образом.

При раздельном использовании защит классов №1, 2, 3 следует распределять их по зонам I, II, III.

В предлагаемой разработке показан не чистый вариант подключения защит под систему заземления TN-C, а рекомендуемая современными требованиями модификация перехода на TN-C-S с выполнением повторного заземления.

Проводник PEN по силовому кабелю от питающей трансформаторной подстанции подается на свою шинку, которая подключается перемычкой к сборке рабочего нуля и шине повторного заземления.

Трехполюсный УЗИП, включенный после вводного автомата, защищает электрический счетчик и все его цепи, включая УЗО, от импульсов перенапряжения. Напоминаю, что он должен монтироваться в отдельном несгораемом боксе.

При отсутствии повторного заземления нижняя клемма модуля УЗИП подключается на шину PEN проводника отдельной жилой, а проводка работает чисто по старой системе TN-C.

Еще одна методика снижения нарастающего фронта броска импульса перенапряжения показана ниже. Здесь работают специальные реактивные сопротивления — дросселя LL1-3 с индуктивностью от 6 до 15 микрогенри, подбираемые расчетным путем.

Их монтируют в отдельном защитном щитке совместно с УЗИП. Так проще выполнять настройки и периодические обслуживания, профилактические работы.

Считаю, что необходимо указать еще на один вариант использования ограничителей перенапряжения и разрядников, которым иногда пренебрегают владельцы сложной электронной техники.

В отдельных ситуациях, как было у меня в электротехнической лаборатории на подстанции 330 кВ. Настольный компьютер подвергался различным видам облучения электромагнитных полей с частотами низкого и высокого диапазонов. Это сказывалось на отображении информации и даже быстродействии.

Однако при ударе молнии в рядом расположенную почву или молниезащиту такой путь может стать источником опасности. Исправить ситуацию позволяет метод создания дополнительной гальванической развязки.

Ее создают подключением разрядника. У меня использовалась разработка компании Hakel, как показано на картинке выше.

Технические характеристики ОПС-1

ОПС-1 — серия коммутационных ограничителей импульсных перенапряжений, которые защищают сети от вредоносных импульсов. В конструктивном плане имеют стандартные модули с 18 миллиметровой шириной под установку на монтажный тип рейки. Содержат твердотельные композитные варисторы из карбидового цинка и механизмы, отвечающие за визуальный контроль изнашиваемости варистора и аварийного предохранителя. Благодаря карбиду цинка снижают сопротивление в 1000 раз во время появления на сменном модуле напряжения, значение которого превышает предельно допустимое.

ОПС 1

Каждый ОПС-1 имеет количество модулей от 1 до 4 штук в однофазной и трехфазной сети. Есть класс, номинальное напряжение, рабочее протекторное напряжение (500-1000 вольт), номинальное количество тока ограничителя (5-10 ампер), ток, который разрядник принимает при атмосферном разряде (40-65 килоампер) и напряжение, до которого уменьшается значение при разрыве (от 0,25 до 1,2 киловатт).

Обратите внимание! Бывает четыре класса защиты. Первый класс устройств не применяется в бытовых установках, а нужен только для того, чтобы защитить линию электрической передачи

Второй класс используется, чтобы защитить высоковольтные скачки напряжения, которые вызваны ударом молнии к линии электрической передачи.

Третий класс нужен, чтобы защищать от перенапряжений с низкими сетевыми значениями. Защитные устройства ставятся в бытовом распределительном устройстве. Четвертый класс используется, чтобы защищать электрические устройства, которые чувствительны к импульсным помехам и всплескам в однофазной сети. Они монтируются в распределительном типе щитка, за розеткой в электрокоробке или около защищаемого устройства.

Технические характеристики

Ограничитель импульсных перенапряжений

  1. Преимущества в использовании ОПН
  2. Технические характеристики ОПН
  3. Устройство ограничителей импульсных перенапряжений
  4. Защита от импульсных перенапряжений

Среди множества защитных устройств широко известен такой высоковольтный аппарат, как ограничитель импульсных перенапряжений. Импульсные перенапрежения возникают в результате нарушений в атмосферных или коммутационных процессах и способны нанести серьезный вред электрооборудованию.

Основным средством защиты дома при попадании молнии служит громоотвод или молниеотвод. Но он не способен справиться с разрядом, проникшим в сеть через воздушные линии. Поэтому проводник, принявший на себя этот импульс, становится основной причиной выхода из строя электрооборудования и домашней аппаратуры, подключенной к данной сети. Чтобы избежать подобных неприятностей рекомендуется их полное отключение на период грозы. Гарантированная защита обеспечивается путем установки ограничителей перенапряжения (ОПН).

Преимущества в использовании ОПН

В обычных средствах защиты установлены карборундовые резисторы, а также соединенные последовательно искровые промежутки. В отличие от них в ОПН устанавливаются нелинейные резисторы, основой которых является окись цинка. Они объединяются в общую колонку, помещенную в фарфоровый или полимерный корпус. Таким образом, обеспечивается их эффективная защита от внешних воздействий и безопасная эксплуатация устройства.

Особенности конструкции оксидно-цинковых резисторов позволяют выполнять ограничителям перенапряжения более широкие функции. Они свободно выдерживают, независимо от времени, постоянное напряжение электрической сети. Размеры и вес ОПН значительно ниже, чем у стандартных вентильных разрядников.

Технические характеристики ОПН

Основной величиной, характеризующей работу ограничителя перенапряжения ОПН, является максимальное действие рабочего напряжения, которое может подводиться к клеммам прибора без каких-либо временных ограничений.

Ток, проходящий через защитное устройство под действием напряжения, называется током проводимости. Его значение измеряется в условиях реальной эксплуатации, а основными показателями служит активность и емкость. Общая величина такого тока может составлять до нескольких сотен микроампер. По этому параметру оцениваются рабочие качества ОПН.

Все импульсные ограничители способны устойчиво переносить медленно изменяющееся напряжение. То есть, они не должны разрушаться в течение определенного времени при повышенном уровне напряжения. Значения, полученные при испытаниях, позволяют настроить защитное отключение прибора по истечению установленного срока.

Величина предельного разрядного тока является максимальным значением грозового разряда. С ее помощью устанавливается предел прочности импульсного ограничителя при прямом попадании молнии.

Нормативный ресурс ОПН определяется и токовой пропускной способностью. Он рассчитывается для работы в наиболее тяжелых условиях, когда присутствуют максимальные грозовые или коммутационные перенапряжения.

Устройство ограничителей импульсных перенапряжений

Производители электротехники пользуются технологией и конструкторскими решениями, которые применяются в других электроустановочных изделиях. Прежде всего, это материал корпуса и габаритные размеры, внешний вид и прочие параметры. Отдельно решаются технические вопросы, связанные с установкой ОПН и его подключением к общим электроустановкам потребителей.

Существуют отдельные требования, предъявляемые именно этому классу устройств. Корпус ограничителя перенапряжений должен обеспечивать защиту от прямых прикосновений. Полностью исключается риск возгорания защитного устройства из-за перегрузок. При его выходе из строя на линии не должно быть коротких замыканий.

Современный ограничитель импульсных перенапряжений оборудуется простой и надежной индикацией. К нему может подключаться сигнализация дистанционного действия.

Комментировать
0
5 просмотров
Это интересно

Русские никогда не жили в избах Занимательные факты
197 комментариев