Изображение для публикации не задано

Как рассчитать количество секций радиатора на комнату

Изображение для публикации не задано
СОДЕРЖАНИЕ
0
61 просмотров
07 января 2021

Что делать если нужен очень точный расчет

К сожалению, далеко не каждая квартира может считаться стандартной. Еще в большей степени это относится к частным жилым домам. Возникает вопрос: как рассчитать количество радиаторов отопления с учетом индивидуальных условий их эксплуатации? Для это понадобится учесть множество различных факторов.

Особенность этого метода состоит в том, что при вычислении необходимого количества тепла используется ряд коэффициентов, учитывающих особенности конкретного помещения, способные повлиять на его способность сохранять или отдавать тепловую энергию. Формула для расчетов выглядит так:

КТ = 100Вт/кв.м. * П * К1 * К2 * К3 * К4 * К5 * К6 * К7. где

КТ — количество тепла, необходимого для конкретного помещения; П — площадь комнаты, кв.м.; К1 — коэффициент, учитывающий остекление оконных проемов:

  • для окон с обычным двойным остеклением — 1,27;
  • для окон с двойным стеклопакетом — 1,0;
  • для окон с тройным стеклопакетом — 0,85.

К2 — коэффициент теплоизоляции стен:

  • низкая степень теплоизоляции — 1,27;
  • хорошая теплоизоляция (кладка в два кирпича или слой утеплителя) — 1,0;
  • высокая степень теплоизоляции — 0,85.

К3 — соотношение площади окон и пола в помещении:

К4 — коэффициент, позволяющий учесть среднюю температуру воздуха в самую холодную неделю года:

  • для -35 градусов — 1,5;
  • для -25 градусов — 1,3;
  • для -20 градусов — 1,1;
  • для -15 градусов — 0,9;
  • для -10 градусов — 0,7.

К5 — корректирует потребность в тепле с учетом количества наружных стен:

К6 — учет типа помещения, которое расположено выше:

  • холодный чердак — 1,0;
  • отапливаемый чердак — 0,9;
  • отапливаемое жилое помещение — 0,8

К7 — коэффициент, учитывающий высоту потолков:

Такой расчет количества радиаторов отопления включает практически все нюансы и базируется на довольно точном определении потребности помещения в тепловой энергии.

Остается полученный результат разделить на значение теплоотдачи одной секции радиатора и полученный результат округлить до целого числа.

Некоторые производители предлагают более простой способ получить ответ. На их сайтах можно найти удобный калькулятор, специально предназначенный для того, чтобы сделать данные вычисления. Чтобы воспользоваться программой, нужно ввести необходимые значения в соответствующие поля, после чего будет выдан точный результат. Или же можно воспользоваться специальным софтом.

Когда получали квартиру не задумывались о том, какие у нас радиаторы и подходят ли они к нашему дому. Но со временем потребовалась замена и тут уже стали подходить с научной точки зрения. Так как мощности старых радиаторов явно не хватало. После всех вычислений пришли к выводу, что 12 достаточно. Но нужно еще учесть вот какой момент — если ТЕЦ плохо выполняет свою работу и батареи чуть теплые, то тут уже никакое количество вас не спасет.

Последняя формула для более точного расчета понравилась, но не понятен коэффициент К2. Как определить степень теплоизоляции стен? Например, стена толщиной 375мм из пеноблока «ГРАС», это низкая или средняя степень? А если добавить снаружи стены 100мм плотного строительного пенопласта, это будет высокая, или все еще средняя?

Ок, последняя формула добротная вроде бы, окна учитываются, но а если в помещении еще и дверь есть наружная? А если это гараж в котором 3 окна 800*600 + дверь 205*85 + гаражные секционные ворота толщиной 45мм размерами 3000*2400?

Если делать для себя — я бы увеличил кол-во секций и поставил бы регулятор. И вуаля — мы уже значительно в меньшей степени зависим от прихотей ТЭЦ.

Максимально точный вариант расчета

Из приведенных выше расчетов мы увидели, что ни один из них не является идеально точным, т.к. даже для одинаковых помещений результаты пусть и немного, но все равно отличаются.

Если вам нужна максимальная точность вычислений, используйте следующий метод. Он учитывает множество коэффициентов, способных повлиять на эффективность обогрева и прочие значимые показатели.

В целом расчетная формула имеет следующий вид:

T =100 Вт/м 2 * A *B * C * D * E * F * G * S ,

  • где Т – суммарное количество тепла, необходимое для обогрева рассматриваемой комнаты;
  • S – площадь обогреваемой комнаты.

Остальные коэффициенты нуждаются в большее подробном изучении. Так, коэффициент А учитывает особенности остекления помещения .

Особенности остекления помещения

  • 1,27 для комнат, окна которых остеклены просто двумя стеклами;
  • 1,0 – для помещений с окнами, оснащенными двойными стеклопакетами;
  • 0,85 – если окна имеют тройной стеклопакет.

Коэффициент В учитывает особенности утепления стен помещения .

Особенности утепления стен помещения

  • если утепление низкоэффективное. коэффициент принимается равным 1,27;
  • при хорошем утеплении (к примеру, если стены выложены в 2 кирпича либо же целенаправленно утеплены качественным теплоизолятором). используется коэффициент равный 1,0;
  • при высоком уровне утепления – 0,85.

Коэффициент C указывает на соотношение суммарной площади оконных проемов и поверхности пола в комнате.

Соотношение суммарной площади оконных проемов и поверхности пола в комнате

Зависимость выглядит так:

  • при соотношении равном 50% коэффициент С принимается как 1,2;
  • если соотношение составляет 40%, используют коэффициент равный 1,1;
  • при соотношении равном 30% значение коэффициента уменьшают до 1,0;
  • в случае с еще меньшим процентным соотношением используют коэффициенты равные 0,9 (для 20%) и 0,8 (для 10%).

Коэффициент D указывает на среднюю температуру в наиболее холодный период года .

Распределение тепла в комнате при использовании радиаторов

Зависимость выглядит так:

  • если температура составляет -35 и ниже, коэффициент принимается равным 1,5;
  • при температуре до -25 градусов используется значение 1,3;
  • если температура не опускается ниже -20 градусов, расчет ведется с коэффициентом равным 1,1;
  • жителям регионов, в которых температура не опускается ниже -15, следует использовать коэффициент 0,9;
  • если температура зимой не падает ниже -10, считайте с коэффициентом 0,7.

Коэффициент E указывает на количество внешних стен.

Количество внешних стен

Если внешняя стена одна, используйте коэффициент 1,1. При двух стенах увеличьте его до 1,2; при трех – до 1,3; если же внешних стен 4, используйте коэффициент равный 1,4.

Коэффициент F учитывает особенности вышерасположенно й комнаты. Зависимость такова:

  • если выше находится не обогреваемое чердачное помещение, коэффициент принимается равным 1,0;
  • если чердак отапливаемый – 0,9;
  • если соседом сверху является отапливаемая жилая комната, коэффициент можно уменьшить до 0,8.

И последний коэффициент формулы – G – учитывает высоту помещения.

  • в комнатах с потолками высотой 2,5 м расчет ведется с использованием коэффициента равного 1,0;
  • если помещение имеет 3-метровый потолок, коэффициент увеличивают до 1,05;
  • при высоте потолка в 3,5 м считайте с коэффициентом 1,1;
  • комнаты с 4-метровым потолком рассчитываются с коэффициентом 1,15;
  • при расчете количества секций батареи для обогрева помещения высотой 4,5 м увеличьте коэффициент до 1,2.

Этот расчет учитывает почти все существующие нюансы и позволяет определить необходимое число секций отопительного агрегата с наименьшей погрешностью. В завершение вам останется лишь разделить расчетный показатель на теплоотдачу одной секции батареи (уточните в прилагающемся паспорте) и, конечно же, округлить найденное число до ближайшего целого значения в сторону увеличения.

Калькулятор расчета радиатора отопления

Для удобства, все эти параметры внесены в специальный калькулятор расчета радиаторов отопления. Достаточно указать все запрашиваемые параметры — и нажатие на кнопку «РАССЧИТАТЬ» сразу даст искомый результат:

Советы по энергосбережению

Зависимость мощности радиаторов от подключения и места расположения

Кроме всех описанных выше параметров теплоотдача радиатора изменяется в зависимости от типа подключения. Оптимальным считается диагональное подключение с подачей сверху, в таком случае потерь тепловой мощности нет. Самые большие потери наблюдаются при боковом подключении — 22%. Все остальные — средние по эффективности. Приблизительно величины потерь в процентах указаны на рисунке.

Потери тепла на радиаторах в зависимости от подключения

Уменьшается фактическая мощность радиатора и при наличии заграждающих элементов. Например, если сверху нависает подоконник, теплоотдача падает на 7-8%, если он не полностью перекрывает радиатор, то потери 3-5%. При установке сетчатого экрана, который не доходит до пола, потери примерно такие же, как и в случае с нависающим подоконником: 7-8%. А вот если экран закрывает полностью весь отопительный прибор, его теплоотдача уменьшается на 20-25%.

Количество тепла зависит и от установки

Количество тепла зависит и от места установки

У каких радиаторов отопления самая высокая теплоотдача

Что касается характеристик металлов, то наименьшей теплоотдачей обладает сталь, а наибольшей –  биметалл (сочетание алюминия и стали).

Материал Теплоотдача (Вт/м*К)
Сталь 47
Чугун 52
Алюминий 202-236
Биметалл 380

Однако это лишь свойства металлов, представляющие общую картину. Теплоотдача, в меньшей степени, но зависит и от межосевого расстояния, площади секции, технологии изготовления. Поэтому мы рекомендуем рассмотреть эффективность каждого вида радиатора в целом, а затем сравнить конкретные наиболее удачные модели, выбрав самые эффективные из них.

Биметаллические

В среднем показатель теплоотдачи биметаллических радиаторов является самым высоким. В зависимости от модели – от 140 Вт до максимальной на рынке мощности в 280 Вт на 1 секцию (модель Sira RS 800). Представляют из себя сочетание стальных проводящих каналов и алюминиевого оребрения, быстро нагреваются и сразу же отдают тепло.

Приборы рассчитаны на рабочее давление системы до 35 атм. Даже самые простые модели имеют срок службы не менее 20 лет. Стоимость за секцию 395-2190 руб.

Алюминиевые

Близкими к биметаллическим являются показатели теплоотдачи алюминиевых радиаторов отопления, некоторые дорогостоящие модели могут иметь более высокую мощность и эффективность, чем простые биметаллические приборы.

В зависимости от модели тепловая мощность может быть в пределах от 130 Вт до 220,9 Вт на 1 секцию (модель Roca Dubal-80). При высокой эффективности, они, в сравнении с биметаллическими, имеют много эксплуатационных нюансов

При выборе необходимо обращать внимание на рабочее давление, иногда оно не превышает даже 10 атм

Главным недостатком является необходимость поддержания определенной кислотности теплоносителя (воды), что сложно даже в частном доме, не говоря уже о квартире с центральным отоплением. В противном случае, уровень pH более 7,5 быстро разрушит приборы. Стоимость 1 элемента – от 350 до 1200 руб.

Стальные

Тепловая мощность стальных панельных батарей относительно небольшая, но оптимальная, особенно в соотношении цена-результат. Они быстро нагреваются, обладают лучшими конвекционными характеристиками (воздух прогревается заметно быстрее), но и быстро остывают. В зависимости от модели, теплоотдача равна 179-13 173 Вт (модель Kermi FTV 330930).

Показатель указывается для всего прибора (т.к

они не имеют секций), поэтому при выборе нужно обращать внимание на длину. Стоимость также имеет самый обширный диапазон – от  1300 до 60 000 руб за панель

Чугунные

Самую низкую теплоотдачу имеют чугунные радиаторы отопления – от 80 до 160 Вт на секцию (известные МС 140). Преимуществом и в то же время недостатком является низкая инерционность: прибор дольше других остывает, но это делает его неподходящим для точной регулировки климата автоматикой.

Чугунные батареи имеют большой объем теплоносителя и существенную массу. Однако чугун устойчив к любым перепадам давления в системе, загрязнениям теплоносителя, не поддается коррозии. Стоимость начинается от 500 рублей за секцию и может достигать 9 000 руб., если это декоративные иностранные высококачественные модели.

Преимущества биметаллических радиаторов отопления

Популярность батарей этой разновидности объясняется очень просто. Чугунные радиаторы достаточно надежны, но выглядят не слишком эстетично. К тому же их сложно монтировать. Алюминиевые батареи смотрятся современно и привлекательно. Однако этот металл не слишком хорошо переносит контакт с кислородом в теплоносителе. Поэтому алюминиевые радиаторы достаточно быстро выходят из строя и начинают протекать. Стальные батареи служат дольше. Однако при этом и выглядят они не так эстетично.

Биметаллические модели совмещают в себе преимущества алюминиевых и стальных радиаторов. В современный интерьер такие батареи вписываются просто идеально. Секции в них выполнены из алюминия. При этом и служат они долго, так как трубы, по которым через них течет теплоноситель, выполнены из стали.

Как рассчитать количество радиаторов для однотрубного контура

Следует учесть тот факт, что все вышесказанное относится к двухтрубным отопительным схемам, предполагающим подачу на каждый из радиаторов теплоносителя одинаковой температуры. Рассчитать секции радиатора отопления в однотрубной системе на порядок сложнее, ведь каждая следующая батарея по ходу движения теплоносителя обогревается на порядок меньше. Поэтому расчет для однотрубного контура предполагает постоянный пересмотр температуры: такая процедура занимает много времени и усилий.

В качестве облегчения процедуры используется такой прием, когда расчет отопления на квадратный метр проводится, как для двухтрубной системы, а потом с учетом падения тепловой мощности наращивают секции для увеличения теплоотдачи контура в общем. Для примера возьмем схему однотрубного типа, которая имеет 6 радиаторов. После определения числа секций, как для двухтрубной сети, вносим определенные корректировки.

Первый из отопительных приборов по ходу движения теплоносителя обеспечивается полностью нагретым теплоносителем, поэтому его можно не пересчитывать. Температура подачи на второй по счету прибор уже меньшая, поэтому нужно определить степень снижения мощности, увеличив на полученное значение число секций: 15кВт-3кВт=12кВт (процентное соотношение уменьшения температуры составляет 20%). Итак, для восполнения потерь тепла понадобятся добавочные секции — если вначале их нужно было 8шт, то после добавления 20% получаем конечное число — 9 или 10 шт.

При выборе, в какую сторону округлить, учитывают функциональное назначение помещение. Если речь идет о спальне или детской, округление проводится в большую сторону. При расчете гостиной или кухни округлять лучше в меньшую сторону. Свою долю влияние имеет также то, на какой стороне расположена комната – южной или северной (северные помещения обычно округляются в большую сторону, а южные – в меньшую).

Данный метод подсчета не является совершенным, так как предполагает увеличение последнего радиатора на линии до поистине гигантских размеров. Следует также понимать, что удельная теплоемкость подаваемого теплоносителя почти никогда не равняется ее мощности. Из-за этого котлы для оснащения однотрубных контуров выбираются с некоторым запасом. Оптимизируют ситуацию наличие запорной арматуры и коммутация батарей через байпас: благодаря этому достигается возможность регулировки теплоотдачи, что несколько компенсирует снижение температуры теплоносителя. Однако от необходимости увеличивать размеры радиаторов и количество его секций по мере удаления от котла при использовании однотрубной схемы даже эти приемы не освобождают.

Чтобы решить задачу, как рассчитать радиаторы отопления по площади, много времени и сил не понадобится

Другое дело – провести корректировку полученного результата, взяв во внимание все характеристики жилища, его размеры, способ коммутации и дислокацию радиаторов: эта процедура достаточно трудоемкая и длительная. Однако именно таким образом можно получить максимально точные параметры для отопительной системы, что обеспечит тепло и уют помещений.. https://www.youtube.com/embed/A-oV-USVydg

Особенности

Расчет радиаторов отопления производится в соответствии с теплопотерями конкретного помещения, а также в зависимости от площади этого помещения. Казалось бы, ничего сложного в создании проверенной схемы отопления с контурами труб и циркулирующим по ним носителю нет, однако правильные теплотехнические расчеты основываются на требованиях СНиП. Такие расчеты выполняются специалистами, а сама процедура считается чрезвычайно сложной. Однако с допустимым упрощением выполнить процедуры можно и самостоятельно. Кроме площади обогреваемого помещения, в расчетах учитываются некоторые нюансы.

Не зря для расчета радиаторов специалисты применяют различные методики. Основная их особенность – учет максимальных теплопотерь помещения. Затем уже рассчитывается нужное количество отопительных приборов, которые компенсируют эти потери.

Понятно, что чем проще будет используемый метод, тем более точными будут итоговые результаты. К тому же для нестандартных помещений специалисты применяют специальные коэффициенты.

Специалисты в своих проектах нередко используют специальные приборы. Например, с точным определением фактических теплопотерь справится тепловизор. На основании данных, полученных по прибору, рассчитывается количество радиаторов, которые с точностью компенсируют потери.

Такой метод расчета покажет наиболее холодные точки квартиры, места, где тепло будет уходить активнее всего. Такие точки часто возникают из-за строительного брака, например, допущенного рабочими, или из-за некачественных строительных материалов.

Результаты проводимых расчетов тесно связаны с существующими видами радиаторов отопления. Для получения наилучшего результата в расчетах необходимо знание параметров планируемых к использованию устройств.

Современный ассортимент включает такие виды радиаторов:

  • стальные;
  • чугунные;
  • алюминиевые;
  • биметаллические.

Для проведения расчетов нужны такие параметры устройств, как мощность и форма радиатора, материал изготовления. Самая простая схема подразумевает размещение радиаторов под каждым окном, имеющимся в комнате. Поэтому рассчитываемое количество радиаторов обычно равно числу оконных проемов.

Как рассчитать количество секций радиатора отопления

Чтобы теплоотдача и нагревательная эффективность была должного уровня, при расчете размера радиаторов нужно учесть нормативы их установки, а отнюдь не опираться на размеры оконных проемов, под которыми они устанавливаются.

На теплоотдачу влияет не ее размер, а мощность каждой отдельной секции, которые собраны в один радиатор. Поэтому лучшим вариантом будет разместить несколько небольших батарей, распределив их по комнате, нежели одну большую. Это можно объяснить тем, что тепло будет поступать в помещение из разных точек и равномерно прогревать его.

Каждое отдельное помещение имеет свою площадь и объем, от этих параметров и будет зависеть расчет количества секций, устанавливаемых в нем.

Расчет на основании площади помещения

Чтобы правильно рассчитать это количество на определенную комнату, нужно знать некоторые правила:

Узнать нужную мощность для обогрева помещения можно, умножив на 100 Вт размер его площади (в квадратных метрах), при этом:

  • На 20% увеличивают мощность радиатора в том случае, если две стены помещения выходят на улицу, и в нем находится одно окно — это может быть торцевая комната.
  • На 30% придется увеличить мощность, если комната имеет те же характеристики, как в предыдущем случае, но в ней устроено два окна.
  • Если же окно или окна комнаты выходят на северо-восток или север, а значит, в ней бывает минимальное количество солнечного света, мощность нужно увеличить еще на 10%.
  • Устанавливаемый радиатор в нишу под окном, имеет сниженную теплоотдачу, в этом случае придется увеличить мощность еще на 5%.

Ниша снизит энергоотдачу радиатора на 5 %

Если радиатор закрывается экраном в эстетических целях, то снижается теплоотдача на 15%, и ее также нужно восполнить, увеличив мощность на эту величину.

Экраны на радиаторах — это красиво, но они заберут до 15% мощности

Удельная мощность секции радиатора обязательно указывается в паспорте, который производитель прилагает к изделию.

Зная эти требования, можно рассчитать необходимое количество секций, разделив полученное суммарное значение требуемой тепловой мощности с учетом всех указанных компенсирующих поправок, на удельную теплоотдачу одной секции батареи.

Полученный результат расчетов округляется до целого числа, но только в большую сторону. Допустим, получилось восемь секций. И тут, возвращаясь к вышесказанному, нужно отметить, что для лучшего обогрева и распределения тепла, радиатор можно разделить на две части, по четыре секции каждая, которые устанавливают в разных местах помещения.

Каждое помещение просчитывается отдельно

Нужно отметить, что такие расчеты подходят для определения количества секций для помещений, оснащенных центральным отоплением, теплоноситель в котором имеет температуру не больше 70 градусов.

Этот расчет считается достаточно точным, но можно произвести расчет и по-другому.

Расчет количества секций в радиаторах, исходя из объема помещения

Стандартом считается соотношение тепловой мощности в 41 Вт на 1 куб. метр объема помещения, при условии нахождения в нем одной двери, окна и внешней стены.

Чтобы результат был виден наглядно, для примера можно рассчитать нужное количество батарей для комнаты площадью 16 кв. м.и потолком, высотой 2,5 метра:

16 × 2,5= 40 куб.м.

Далее нужно найти значение тепловой мощности, это делается следующим образом

41 × 40=1640 Вт.

 Зная теплоотдачу одной секции (ее указывают в паспорте), можно без труда определить количество батарей. Например, теплоотдача равна 170 Вт, и идет следующий расчет:

 1640 / 170 = 9,6.

После округления получается цифра 10 — это и будет нужное количество секций отопительных элементов на комнату.

Существуют также некоторые особенности:

  • Если комната соединяется с соседним помещением проемом, не имеющим двери, то необходимо считать общую площадь двух комнат, только тогда будет выявлена точное количество батарей для эффективности отопления.
  • Если теплоноситель имеет температуру ниже 70 градусов, количество секций в батареи придется пропорционально увеличить.
  • При установленных в комнате стеклопакетах, значительно снижаются тепловые потери, поэтому и количество секций в каждом радиаторе может быть меньше.
  • Если в помещениях установлены старые чугунные батареи, которые вполне справлялись с созданием нужного микроклимата, но есть планы поменять их на какие-то современные, то посчитать, сколько их понадобится, будет очень просто.Одна чугунная секция имеет постоянную теплоотдачу в 150 Вт. Поэтому количество установленных чугунных секций нужно умножить на 150, а полученное число делится на теплоотдачу, указанную на секции новых батарей.

Факторы, влияющие на расчёт

На расчет мощности радиаторов отопления влияют следующие факторы.

Ориентация комнат по сторонам света

Принято считать, что если окна помещения выходят на юг или запад, то оно в достаточном количестве имеет солнечный свет, поэтому в эти двух случаях коэффициент «b» будет равен 1,0.

Добавление к нему в 10% требуется, если окна комнаты ориентированы на восток или север, так как солнце здесь практически не успевает обогреть помещение.

Справка! Для северных районов такой показатель берётся в размере 1,15.

Если комната выходит на наветренную сторону, то коэффициент для расчета увеличивается до b=1,20, при параллельном расположении относительно потоков ветра — 1,10.

Влияние внешних стен

Их число напрямую определяется показателем «а». Так, если помещение имеет одну внешнюю стену, то он принимается равным 1,0, две — 1,2. Добавление каждой следующей стены ведёт к увеличению коэффициента тепловой отдачи на 10%.

Зависимость радиаторов от теплоизоляции

Сократить расходы на обогрев квартиры или дома позволит проведение грамотного утепления стен. Значение коэффициента «d» способствует увеличению или снижению тепловой мощности батарей отопления.

В зависимости от степени утепления внешней стены показатель бывает следующий:

  • Стандартное, d=1,0. Они нормальной или малой толщины и либо оштукатурены снаружи, либо имеют небольшой слой теплоизоляции.
  • При особом способе утепления d=0,85.
  • При недостаточной устойчивости к холодам —1,27.

При позволяющем пространстве допускается фиксировать слой теплоизоляции к внешней стене изнутри.

Климатические зоны

Этот фактор определяется низкими уровнями температур для различных регионов. Так c=1,0 при погоде до —20 °C.

Для областей с холодным климатом показатель будет следующим:

  • с=1,1 при температурном режиме до —25 °C.
  • с=1,3: до —35 °C.
  • с=1,5: ниже 35 °C.

Своя градация показателей и для тёплых регионов:

  • с=0,7: температура до —10 °C.
  • с=0,9: лёгкий мороз до —15 °C.

Высота помещения

Чем выше в строении уровень перекрытия, тем больше этой комнате требуется тепла.

В зависимости от показателя расстояния от потолка до пола определяется поправочный коэффициент:

  • е=1,0 при высоте до 2,7 м.
  • е=1,05 от 2,7 м до 3 м.
  • е=1,1 от 3 м до 3,5 м.
  • е=1,15 от 3,5 м до 4 м.
  • е=1,2 свыше 4 м.

Роль потолка и пола

Сохранению тепла в помещении также способствует его соприкосновение с потолочным перекрытием:

  • Коэффициент f=1,0 если есть чердак без утепления и отопления.
  • f=0,9 для чердака без обогрева, но с теплоизоляционным слоем.
  • f=0,8, если комната выше отапливаемая.

Пол без утепления определяет показатель f=1,4, с утеплением f=1,2.

Качество рам

Для расчёта мощности отопительных приборов важно учесть и этот фактор. Для оконной рамы с однокамерным стеклопакетом h=1,0, соответственно для двух— и трёхкамерного — h=0,85. Для старой рамы из дерева в расчёт принято брать h=1,27

Для старой рамы из дерева в расчёт принято брать h=1,27.

Размер окон

Показатель определяется соотношением площади оконных проёмов с квадратными метрами помещения. Обычно он равен от 0,2 до 0,3. Так коэффициент i= 1,0.

При полученном результате от 0,1 до 0,2 i=0,9 до 0,1 i=0,8.

Если размер окон выше стандарта (соотношение от 0,3 до 0,4), то i=1,1, а от 0,4 до 0,5 i=1,2.

Если окна панорамные, то целесообразно при каждом увеличении соотношения на 0,1 повышать i на 10%.

Для комнаты, в которой зимой регулярно используется балконная дверь, автоматически повышает i ещё на 30%.

Закрытость батареи

Минимальное ограждение радиатора отопления способствует более быстрому прогреву комнаты.

В стандартном случае, когда батарея отопления расположена под подоконником, коэффициент j=1,0.

В других случаях:

  • Полностью открытый прибор обогрева, j=0,9.
  • Источник отопления прикрыт настенным выступом горизонтального типа, j=1,07.
  • Батарея отопления закрыта кожухом, j=1,12.
  • Полностью закрытый радиатор отопления, j=1,2.

Способ подключения

Способов подключения радиаторов отопления несколько и каждый из них определяется показателем k:

  • Метод подключения радиаторов «по диагонали». Является стандартным, и k=1,0.
  • Подключение «с боковой стороны». Способ популярен из-за небольшой длины подводки, k=1,03.
  • Использование пластиковых труб по методу «снизу с двух сторон», k=1,13.
  • Решение «снизу, с одной стороны» является готовым, происходит подключение к 1 точке подающей трубы и обратки, k=1,28.

Важно! Иногда для повышения точности результатов применяют дополнительные поправочные коэффициенты

Комментировать
0
61 просмотров
Это интересно

Русские никогда не жили в избах Занимательные факты
197 комментариев