Расчет снеговой нагрузки на плоскую крышу

Расчет снеговой нагрузки на плоскую крышу

Расчет снеговой нагрузки на плоскую крышу
СОДЕРЖАНИЕ
0
861 просмотров
04 января 2021

10 Ответы

0 голосов

ответил

27 Май

от
chela (bv)
Доктор Наук

(42.5k баллов)

● 3 ● 4 ● 4

Лучший ответ

Вес снега нужно обязательно учитывать тем людям, которые проектируют крыши домов. В этом случае нужно учитывать то, что даже свежевыпавший снег может быть как сухим, так и очень мокрым.

Вес этого снега очень разный — от 50 кг/куб до 600 кг/куб.

Если крыша имеет небольшой уклон и ее размеры например 80 м.кв и она рассчитана на толщину снега в 40 см, то вся конструкция должна справиться с весом 80*0,4*600 = 19,2 тонны. Это достаточно большой вес, который грозит завалить крышу, поэтому я рекомендовал бы всем при наличии большого снежного покрова на крыше по мере возможности хотя-бы частично очищать ее от снега.

Сколько весит куб снега

Нашла вот такую информацию, что вес 1м3 снега (1 кубический метр) составляет

  • если снег свежевыпавший — 50- 100 килограммов:
  • сухой (неподтаявший) и чистый — 100 — 300 килограммов;
  • тающий снег — 350-600 килограммов.

Вес рассчитывают от плотности, а плотность снега может быть как сам снег разным.

Снег бывает рыхлым, утрамбованным, мокрым, пушистым и так далее. Кубы снега необходимо знать водителям снегоуборочных машин, от количества вывезенных кубов снега зависит их зарплата. Вот цифры , сколько снега в одном кубометре.

Сухой снег, только что выпал от 30 до 60 килограмм.

Мокрый снег, только что выпал от 60 до 150 кг.

Снег, который выпал и уже успел осесть, в 1 кубометре получается от 200 до 300 кг.

Снег, который выпал в результате метели или ветер его принес, вмещает в кубе от 200 до 300 кг.

Снег осел, но это старый сухой снег и это от 300 до 500 кг.

Сухой, очень плотно слежавшийся снег, он по структуре зернистый, это может быть многолетний снег , в 1 кубометре от 500 до 600 кг.

Этот же самый снег, но мокрый , тогда в одном кубе от 600 до 800 кг.

И еще есть глетчерный лед , я бы назвала его настом, в 1 кубометре от 800 до 960 килограмм.

Самый легкий снег зафиксирован в Якутии — один кубометр этого пушистого игольчатого снега весит всего 10 килограммов. Снег, падающий в тихую безветренную погоду весит чуть более 50 килограмм на куб. При легкой метели снег уплотняется ветром и его вес будет лежать в промежутке от 120 до 180 килограмм на каждый кубометр. В сильный ветер, да еще и продолжающийся несколько дней подряд снег может утрамбоваться до 400-450 килограмм в кубометре. Так же по плотности различается снег из чистых лесов и пригородов. В лесу плотность снега составляет 100 килограмм, а в полях близ городов составляет 400 килограмм на куб. Вносит свой вклад в плотность снега и оттепель. При плотности в 750 килограмм на куб снег перестает быть снегом — перестает пропускать воздух и следовательно сжиматься и уплотняться.

Все зависит от того, про какой снег идет речь. Ведь снег бывает разный: только выпавший, лежалый, тающий.

Нашла вот такую таблицу, где указана плотность снега в различных его состояниях.

Здесь мы можем увидеть, что в один кубометр снега составляет от 100 до 420 кг.

Здравствуйте, тут все зависит от многих факторов, снег новый или нет, какой плотности снег, он сухой или тающий, если все это рассчитать вместе то вес снега в одном кубометре может варьироваться от пятидесяти килограммов до семисот килограммов!

0 голосов

Всё, безусловно, зависит от того какой это снег и какой процент содержания воды в нем. Например, только что выпавший снег может весить от 100 до 150 кг на 1 м³. Однако, если его утрамбовать, то будет больше. Если снег талый, то в зависимости от того, сколько он содержит воды может весить от 500 до 800 кг на 1 м³.

Снеговая нагрузка и каркас теплицы

Тут всё гораздо интереснее и не всё так однозначно как преподают нам продавцы теплиц из поликарбоната. Людям говорят, что вот мол есть усиленные и не усиленные, первые снег выдерживают, а вторые нет. В чём же заключается это усиление для каркаса? Конечно, об этом подробно написано в прошлой статье

Но если коротко, то всегда надо обращать внимание на металл из которого этот каркас изготовлен. При одинаковых условиях горячекатаный металл гораздо менее прочен, нежели холоднокатаный

Скорее всего, пока только на эту метрику и нужно ориентироваться, так как пока нет норм именно для теплиц., но если «копнуть» совсем глубоко можно изучить СНиП 2.01.07-85 (Нагрузки и воздействия).

Стоит сказать, что многие производители теплиц сами измерили такую нагрузку и публикуют её в аннотации к своей продукции.

Основные изменения в СП 20.13330.2016

Главное отличие СП 20.13330.2016 от нормативова СП 20.13330.2011 — это радикальное увеличение снеговой нагрузки практически по всей территории России, за исключением некоторых территорий. Также была сильно переработана карта районирования по весу снегового покрова. Это связано с переходом на период расчета в 50 лет, который давно используется в европейских нормах. Это должно привести к значительному увеличению запаса прочности новых зданий, что особенно актуально на фоне возвращения зим с продолжительными снегопадами в некоторых районах страны. К сожалению, эти же изменения приводят к увеличению материалоемкости несущих конструкций и, как следствию, к заметному удорожанию строительства промышленных зданий, торговых центров и других масштабных объектов с плоскими кровлями и большим количеством перепадов высот, зенитных фонарей и парапетов.

Примерно также, пусть и в меньшем масштабе, изменились гололедные нагрузки. А вот карты и сами расчеты давления ветра остались практически такими же, как и в предыдущем нормативе, за исключением нескольких небольших корректировок.

Остальные изменения в СП 20.13330.2016 точечные, хотя их и довольно много. Поэтому рекомендуем ознакомиться с документом полностью, причем с версией, которая учитывает все официальные изменения (на текущий момент их два).

Снеговая нагрузка: основные моменты

Расчет нагрузки на крышу – важное и ответственное мероприятие, связанное не только с проектированием крыши. Учет этого фактора важен в следующих случаях:

  • проектирование фундамента дома. Вес снега должен учитываться при расчете общего веса дома для верного расчета прочности фундамента. Этот момент особенно важен в случае рыхлого грунта;
  • расчет кровли. На фундамент дома нагрузка от снега передается одинаково посредством стен, а на разные точки крыши она воздействует по-разному: на отдельных участках кровли снег совсем не задерживается, на других, наоборот, накапливается. Таким образом, снеговая нагрузка относится к типу основных нагрузок на крышу.

Среди начинающих строителей бытует мнение, что расчет снеговой нагрузки на кровлю более актуален для северных местностей, где зимой выпадает гораздо больше снега, чем на юге. Однако проектирование крыш для областей, где зимой часто наблюдаются скачки температуры от минусовой до 0° и выше, содержит в себе гораздо больше сложностей.

  • Подтаивая, снеговая масса увеличивает свой вес в среднем в три раза: 100 кг на куб. м пушистого снега против 300 кг на куб. м сырого. Резкое повышение давления на кровлю может стать причиной деформации стропил, повреждения кровли и элементов кровельного пирога и протечек.
  • При частой оттепели снежные массы с крыши быстро и неравномерно сходят с поверхности кровли, что может таить большую опасность для людей.

Важно помнить: чем круче скаты кровли, тем меньше снега будет задерживаться на них. При крыше сложной формы снег будет накапливаться в местах внутренних углов, что приведет к созданию неравномерной нагрузки

Большие снежные массы могут повредить и систему водостока. Чтобы этого не произошло, рекомендуется устанавливать специальные снегозадержатели.

При крыше сложной формы снег будет накапливаться в местах внутренних углов, что приведет к созданию неравномерной нагрузки. Большие снежные массы могут повредить и систему водостока. Чтобы этого не произошло, рекомендуется устанавливать специальные снегозадержатели.

Очистка крыши от снега возможна разными способами:

  • вручную. Данный способ при простоте и минимальных затратах обладает одним очень важным недостатком – отсутствие безопасности для человека;
  • более удобно создание специальной системы обогрева, которая помогает безопасному сходу снега с крыши и избавляет карнизы от обилия сосулек. Нагревательные части подобной системы монтируются по периметру кровли перед желобами водостока.

Почему так важно определить, сколько кубов песка в 1 тонне

Показатель, отражающий, сколько килограмм в 1 кубе песка, при ошибочных расчетах способен вызвать множество трудностей:

  • нарушение рецептуры смеси из бетона;
  • неправильная консистенция готового раствора;
  • утрата адгезивных свойств;
  • низкое качество бетона;
  • нарушения в процессе застывания;
  • снижение прочности бетона;
  • преждевременное разрушение конструкции, изготовленной из цементного раствора.

По этой причине очень важно определить не только, сколько песка в 1 кубе, но и какой вес материала содержится в этом объеме. На заметку! В большинстве случаев используется в качестве стандартной меры веса 1 куб песка

Именно эта единица рассматривается, как общепринятый показатель для вычислений. Несмотря на это в справочниках и таблицах можно встретить и другие варианты, например, песок в тоннах/куб. м или в граммах/куб. см

На заметку! В большинстве случаев используется в качестве стандартной меры веса 1 куб песка. Именно эта единица рассматривается, как общепринятый показатель для вычислений. Несмотря на это в справочниках и таблицах можно встретить и другие варианты, например, песок в тоннах/куб. м или в граммах/куб. см.


При расчете необходимого количества кубов песка учитывают его удельный вес.

Показатель, отражающий по 1 кубу, сколько кг песка содержится в указанном объеме, называется удельной массой или удельным весом. Данная мера, применимая к сыпучим материалам, находится в диапазоне 1500-2800 кг/м³. В соответствии теперь можно прикинуть, сколько кг в кубе песка.

На значение удельной массы материала могут повлиять различные факторы, среди которых:

  • состав минералов;
  • состав зерна;
  • размер фракций;
  • уровень влажности;
  • процент уплотнения;
  • примеси.


Утрамбовка тротуарной плитки с использованием мокрого песка.

Особенности расчета

Формула

Необходимый принцип расчета приведен в своде правил, действующем с 2016 года. Там указана следующая общая формула (с перемножением множителей): S 0 = c b х c t х µ х S g, где:

  • Sg – нормативный индекс нагрузки;

  • cb – коэффициент ветрового выноса снега;

  • ct — тепловой (правильнее, термический) коэффициент, определяющий интенсивность выноса тепла сквозь кровлю;

  • µ — еще один коэффициент, который определяется степенью наклона кровельного ската в отношении горизонтали.

Важный показатель — доля длительности снеговой нагрузки. Долго действующие факторы полезно рассчитать как менее интенсивные по уровню. В этом случае применяется коэффициент поправки 0,5 (при условии, что среднегодовая температура превышает 5 градусов). А вот кратковременные воздействия обсчитывают преимущественно с повышающими индексами, значения которых специалисты берут из профильной литературы. По похожим же правилам ведется расчет и нагрузки на навесы.

Определение коэффициентов

Но все это касается только предельно общих случаев. Полезно проанализировать конкретные примеры, как работают все эти формулы. Пусть имеется здание с габаритами ниже 100 м, не имеющее изощренных кровельных геометрических форм. Для больших домов либо при ломаном рельефе потребуются более сложные схемы вычисления. Зависимость интенсивности давления снега и угла наклона кровельного ската вполне объективна.

Ниже всего в плане надежности оказываются плоские или имеющие очень слабый наклон кровли. Для них коэффициент µ принимают равным единице. Такой показатель действует при наклоне крыши не более 25 градусов. Повышение крутизны по отношению к горизонтали земли увеличивает площадь кровли, на которой распределяется выпадающий снег. Для диапазона углов от 25 и вплоть до 60 градусов µ принимают равным 0,7.

На еще более крутых поверхностях осадки вообще не накапливаются. Для углов свыше 60 градусов нагрузочный коэффициент принимают равным 0. Вот такие простые правила позволяют точно определить индекс перехода от веса покрова земли на покрытие. Но наряду с ним приходится еще учитывать и так называемый термический коэффициент. По нему судят о том, насколько интенсивно будет происходить таяние снега при выделении тепла через поверхность крыши.

Необходимыми условиями являются:

  • отсутствие утепления кровли или крайне слабая его эффективность;

  • наклон поверхности свыше 3 градусов;

  • эффективный отвод стоков и талой воды.

Но обязательно требуется помнить еще и о том, что ветер всегда сносит с поверхности крыши снег. По умолчанию соответствующий коэффициент равен единице, потому что эффективность сноса невелика. Иногда расчетный индекс принимают равным 0,85. Предварительно следует убедиться, что:

  • зимой стабильно дует ветер не медленнее 4 м/с;

  • в среднем за обычную зиму температура воздуха будет ниже 5 градусов (только при таком условии есть достаточное число легко переносимых частиц);

  • угол кровельного ската не ниже 12 и не более 20 градусов.

Но и это еще не все! До применения в непосредственном проектировании требуется умножить полученный на предыдущем этапе результат на коэффициент надежности (который составляет 1,4). Цель такой операции — учесть потерю прочности конструкционных материалов здания с течением времени. Что касается массы снега, то в обычном состоянии он весит примерно 100 кг на 1 куб. м. Но мокрый снег весит уже 300 кг на 1 м3; таких сведений вполне достаточно, чтобы отталкиваться при расчете только от толщины покрова.

Замерять эту толщину следует на открытом месте по поверхности. Дополнительно умножают показатель на коэффициент резервирования, то есть увеличивают ее на 50%. Это позволяет обычно компенсировать даже последствия самой суровой зимы. Точно учесть местные особенности помогают официальные карты снеговой нагрузки. Именно на основе этих карт строятся нормативы СНиП.

Карты и таблицы по снеговой и ветровой нагрузке

Главное отличие СП 20.13330.2016 от нормативов 2011 года — это радикальное увеличение снеговой нагрузки практически по всей территории России, за исключением некоторых территорий. Также была сильно переработана карта районирования по весу снегового покрова. Это связано с переходом на период расчета в 50 лет, который давно используется в европейских нормах. Это должно привести к значительному увеличению запаса прочности новых зданий, что особенно актуально на фоне возвращения зим с продолжительными снегопадами в некоторых районах страны. К сожалению, эти же изменения приводят к увеличению материалоемкости несущих конструкций и, как следствию, к заметному удорожанию строительства промышленных зданий, торговых центров и других масштабных объектов с плоскими кровлями и большим количеством перепадов высот, зенитных фонарей и парапетов.

Снеговые районы по СП 20.13330.2016

Снеговая нагрузка прямо зависит не только от типа здания и уклона кровли, но и от места строительства. Всего в Российской Федерации выделяют восемь районов с нагрузкой от 0,5 кН/м² в первом до 4 кН/м² в восьмом. При этом в горной местности при высоте над уровнем море более 500 м вводят поправки, которые дополнительно увеличивают нагрузку.

Таблица нормативного значения веса снегового покрова
Снеговые районы I II III IV V VI VII VIII
Sg, кН/м² 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0

Значения Sg допустимо брать не по таблице, а рассчитывать по данным гидрометеорологии в месте строительства. При этом его вычисляют по формул Sg = Sg,50/1,4, где Sg,50 — превышаемый в среднем один раз в 50 лет ежегодный максимум веса снегового покрова.

Карты снеговых районов

В приложениях СП 20.13330.2016 есть три карты:

  • основная карта снеговых нагрузок для всей территории РФ;
  • районирование по снеговым нагрузкам для острова Сахалин;
  • карта снеговых нагрузок для республики Крым.

Районирование по давлению ветра

Снеговая нагрузка прямо зависит не только от типа здания и уклона кровли, но и от места строительства. Всего в Российской Федерации выделяют восемь районов с нагрузкой от 0,5 кН/м² в первом до 4 кН/м² в восьмом. При этом в горной местности при высоте над уровнем море более 500 м вводят поправки, которые дополнительно увеличивают нагрузку.

Ветровая нагрузка на сооружение зависит не только от того, к какому району относится место строительства (их, как и в случае со снеговой нагрузкой, восемь), но и от высоты над уровнем земли. Поэтому основные данные для расчетов определяются по двум таблицам ниже.

Нормативное значение давления ветра
Ветровые районы Ia I II III IV V VI VII
w, кПа 0,17 0,23 0,30 0,38 0,48 0,60 0,73 0,85

Нормативное значение w допустимо уточнять по показаниям местных метеостанций с 10-минутным интервалом осреднения и с периодом повторяемости 50 лет.

Коэффициент k(ze) для высот ze ≤ 300 м
Высота ze, м Коэффициент k для типов местности
А В С
≤5 0,75 0,5 0,4
10 1,0 0,65 0,4
20 1,25 0,85 0,55
40 1,5 1,1 0,8
60 1,7 1,3 1,0
80 1,85 1,45 1,15
100 2,0 1,6 1,25
150 2,25 1,9 1,55
200 2,45 2,1 1,8
250 2,65 2,3 2,0
300 2,75 2,5 2,2

Примечание

В таблице три типа местности:

  • А — открытые побережья водоемов, сельские территории, включая местность с постройками высотой не более 10 м, тундра, степи, лесостепи, пустыни.
  • В — города, леса и другие местности, на которых равномерно расположены препятствия высотой более 10 м.
  • С — плотно застроенные городские районы, высота зданий и сооружений в которых свыше 25 м.

Карты районирования по давлению ветра

В приложениях СП 20.13330.2016 есть семь карт по давлению ветра:

  • основная карта ветрового давления для всей территории РФ;
  • районирование давлению ветра для острова Сахалин и Приморского края;
  • районирование давлению ветра для Камчатки;
  • районирование давлению ветра для Кольского полуострова;
  • районирование давлению ветра для территории Кавказа;
  • районирование давлению ветра для Калиниградской области;
  • районирование давлению ветра для республики Крым;

Читайте по теме:

Нормативный документ в удобном онлайн формате и возможностью скачать pdf-файл на компьютер.

СП 50.13330.2012 Тепловая защита зданий с изменением №1 в удобном онлайн формате и возможностью скачать pdf-файл.

Расчет нагрузки снега на кровлю

Еще на этапе проектирования кровли для исключения повреждений ее конструкции при обильных осадках, проводят расчетные мероприятия. Средний вес снега составляет 100 кг на куб. метр, а влажные осадки весят еще больше, что составляет 300 кг на 1 куб. метр. Зная эти примерные величины, можно достаточно просто произвести расчет допустимой снеговой нагрузки.

Но для этого также понадобится знание толщины выпадающего слоя снега. Измерить этот показатель можно на ровном участке, а полученное число умножить на коэффициент, который предполагает запас и равняется 1,5. Для того чтобы учесть региональный показатель, можно использовать специальную карту. Она стала основой для получения правил СНиП и других нормативов. В целом показатель определяется по следующей формуле:

S=Sрасч. * μ

В соответствии с данной формулой, ее составляющие расшифровываются так:

  • S – снеговая нагрузка полного типа
  • Sрасч — значение веса на квадратный метр горизонтальной площадки.
  • μ – коэффициент наклона кровли.

Обычно, как говорилось ранее, расчеты производятся по карте снеговых нагрузок, которая представлена ниже:

В соответствии со СНиП существуют такие показатели коэффициента наклона кровли:

  • Если уклон кровли составляет менее 25 градусов, то коэффициент равен 1.
  • Если уклон кровли находится в пределах от 25 до 60 градусов, то коэффициент будет равен 0,7.
  • При уклоне более 60 градусов, коэффициент можно и вовсе не учитывать.

При этом учитывается и та сторона, с которой дует ветер. Это нужно, так как с наветренной стороны снега будет в любом случае меньше, чем с подветренной.

Для того чтобы лучше понять, каким образом производится расчет снеговой нагрузки, представим наглядный пример для Московской области. Рассчитываемая кровля имеет уклон, равный 30 градусам. Итак, согласно требованиям СНиП, производим расчет:

  1. В карте находим, месторасположение Московской области и выявляем, что она относится к третьему климатическому району. Здесь значение нагрузки на крышу равно 180 кг на 1 кв. метр.
  2. Согласно формуле, подсчитываем общий показатель веса снега. Для этого 180 умножаем на коэффициент, равный 0,7. Получаем число 126 кг на кв. метр.
  3. Уже по этому показателю создается стропильная система, которая рассчитывается по максимальным числам.

Помимо такого варианта, существует полный расчет, который также представлен в СНиП и имеет там соответствующую таблицу. Расчет ведется по следующей формуле:

Q1 = m*Q

Здесь в качестве показателя коэффициента выступает m, который рассчитан по методу интерполяции. При уклоне крыши в 30 градусов он равен 1, а при 60 градусах – 0.

Q

Может быть произведен расчет нормативного показателя. Для этого нужно пользоваться атласом, в котором зафиксированы изменения СНиПа или же высчитывать показатель по формуле: Q2 = 0,7* Q* m. Если расчет производится для той конструкции, которая монтируется на территориях с постоянными ветрами, сносящими снег с крыши, то необходимо в формулу добавлять коэффициент C. Он равен 0,85. Но для добавления этого показателя есть целый ряд условий. Это скорость ветра не ниже 4 м/с, среднемесячная температура в зимние месяцы не выше -5 градусов, а уклон должен находится в пределах от 12 до 20 градусов.

Важно! Если непонятно, как рассчитать нагрузку самостоятельно, то лучше обратиться к специалистам.

Снеговая нагрузка скатных кровель

c http-equiv=»Content-Type» content=»text/html;charset=UTF-8″>lass=»article_show_context_1″>

Несмотря на то, что скатные конструкции кровли имеют определенные преимущества перед плоскими вариантами, в любом случае выполняется расчет давления на несущие элементы крыши в результате возникновения снеговой нагрузки. Цель расчета — определить ориентировочный средний размер стропил в зависимости от общей массы кровельного пирога, снеговой и ветровой нагрузки.

Методика расчета

Стандартный подход в определении величины нагрузки площади ската требует выполнения следующих расчетов:

Определяется максимальная высота снегового заряда на крыше и его вес на единицу площади крыши;
По рекомендациям и нормативам СНиПа определяют коэффициент уменьшения давления на скатной поверхности в сравнении с плоской крышей, при этом качество и шероховатость кровельного материала в расчет не принимают, используется только угол наклона кровли;
Перемножая массу на коэффициент уменьшения и площадь поверхности, получают давление от снеговой массы, передающееся на стены и фундамент

Эту величину используют только для оценки нагрузки, а не для точных расчетов.

Важно! При этом в стандартном способе расчета принимается, что снеговой покров распределен равномерно по всей плоскости крыши.

Как и для плоских вариантов крыш, нагрузку от снеговой массы на скатных конструкциях можно посчитать с помощью программы – калькулятора, в ней содержится много поправочных коэффициентов, поэтому результат получается несколько точнее грубой оценки в одно арифметическое действие.

Как ведет себя снежный покров на различных участках

Зачастую считают, что давление снега на скат кровли не зависит от высоты покрова. Это действительно так, но только для свежевыпавшего снега и только для абсолютно герметичных кровель с углом наклона не менее 25%. Во всех остальных случаях неравномерное давление снега начинает сказываться уже через сутки.

Снег в любом случае начинает перемещаться вниз и таять. Большая часть массы уйдет с коньковой поверхности вниз, ближе к свесам. Часть воды затекает в стыки между листами кровли и может намерзать или улавливаться теплоизоляцией. Чем теплее кровля, тем крепче держится снег на ее поверхности. В некоторых случаях используют обогревающие элементы, позволяющие растопить замерзшую воду в самых опасных для крыши местах- центральной части и на свесах.

Снеговой заряд на крыше начинает перераспределяться вдоль ската, в первую очередь из-за процесса уплотнения, и во вторую — из-за неравномерной деформации стропильной системы. На рисунке приведена схема прогиба скатной кровли, полученная расчетным способом моделирования на компьютере.

Центральная часть стропил, самая гибкая и неустойчивая, прогибается, и соответственно, в каждой точке кровли под снеговой нагрузкой меняется угол наклона ската, а значит, на участках ближе к свесам увеличивается давление на стропильный каркас.

Особенности распределения снеговой нагрузки поверхности крыши

Часто сбивают с толку данные о количестве и мощности снегового покрова в различных климатических поясах. Эти сведения имеют очень среднее значение, в одних условиях из-за наветренной позиции крыши снега меньше, а с подветренной – больше. Кроме того, на самой крыше имеется масса конструктивных элементов и участков, где снеговая нагрузка значительно выше средней величины.Например, углы ендова, слуховые и мансардные окна.

В этих местах при неудачном направлении ветра может образоваться сугроб в несколько раз выше среднего значения. Самым неприятным явлением в перемещении снеговой массы является скопление на свесах огромных зарядов снега, перемешанных с талой водой. Давление такой массы может на порядок превышать среднюю характеристику снеговой нагрузки из справочных данных.

Заключение

На процесс скопления снега может влиять даже материал кровли. Лучше всего показала себя кровля из классической керамической черепицы. Неплохо сбрасывают снег крыши, крытые металлическим оцинкованным покрытием, металлочерепицей, хуже всего борется со снегом ондулин и битумная черепица, рулонная кровля. Поэтому характер покрытия необходимо также учитывать при расчете будущей снеговой нагрузки.

( Пока оценок нет )

Расчетная снеговая нагрузка

Нормативное значение только основа для расчета реально возможного веса снега. Просто использовать нормативное значение для расчета прочности нельзя, так как:

  • скаты крыши могут быть наклонными, снег будет разложен на большей площади;
  • ветра, сдувающие снег с кровли, в каждой местности свои;
  • окружающие строения изменяют влияние ветров;
  • теплопроводность крыши может привести к ускоренному таянию и снижению веса.

Для проектирования крыши с необходимой и достаточной надежной конструкцией следует учесть все факторы, влияющие на реальную ситуацию.

Формула расчета

Обязательная для применения проектировщиками формула вычисления снеговой нагрузки дана в СП 20.13330.2016 и выглядит следующим образом: S 0 = c b c t µ S g.

При расчете нормативная нагрузка S g умножается на три коэффициента:

  • µ – коэффициент, учитывающий угол наклона ската крыши по отношению к горизонтальной поверхности.
  • c t – термический коэффициент. Зависит от интенсивности выделения тепла через кровлю.
  • c b – ветровой коэффициент, учитывающий снос снега ветром.

Присутствие в формуле коэффициентов определяет зависимость результата от некоторых условий.

Определение коэффициентов

Рассмотрим значения коэффициентов применительно к зданиям с габаритными разменами менее 100 метров и без сложных кровельных форм. Для крупногабаритных зданий или при ломаных рельефах кровли применяются более сложные расчеты.

Зависимость величины снежного давления на квадратный метр от угла наклона ската крыши объясняется тем, что:

  1. На плоских или слабонаклоненных кровлях снег не сползает. Коэффициент µ равен 1,0 при наклоне ската до 25°.
  2. Расположение кровли под углом к горизонтальной поверхности приводит к увеличению площади кровли, на которую выпадает норма снега для горизонтального квадрата. Коэффициент µ равен 0,7 на углах 25° – 60°.
  3. На крутых поверхностях осадки не задерживаются. Коэффициент µ равен 0, если наклон более 60° (нагрузка отсутствует).

Введение в формулу термического коэффициента c t позволяет учесть интенсивность таяния снега от выделения тепла через кровлю. Как правило, кровельный пирог здания проектируют с минимальными потерями тепла в целях экономии, а коэффициент c t при расчетах принимают равным 1,0. Для применения пониженного значения коэффициента 0,8 необходимо, чтобы на здании было неутепленное покрытие с повышенным тепловыделением с наклоном кровли более чем 3° и наличием действенной системы отвода талых вод.

Ветер сносит снег с крыш, снижая давящий на конструкцию вес. Ветровой коэффициент c b можно понизить с 1,0 до 0,85, но только в том случае, если выполняются условия:

  1. Есть постоянные ветра со скоростью от 4 м/с и выше.
  2. Средняя зимняя температура воздуха ниже 5С.
  3. Угол ската кровли от 12° до 20°.

Рассчитанное значение перед применением в проектных решениях умножают на коэффициент надежности γ f = 1,4, обеспечивая компенсацию теряющейся со временем прочности материалов конструкций.

Пример расчета нагрузки

Расчет снеговой нагрузки на кровлю проведем для здания, которое проектируется для строительства в Хабаровске. По карте определяем категорию района – II, по категории узнаем максимальное нормативное значение – до 120 кг/м 2 . Здание проектируется с двускатной крышей под углом 35 ° к поверхности. Значит, коэффициент µ равен 0,7.

Предполагается наличие в здании мансарды и применение эффективных теплоизолирующих материалов кровельного пирога. Коэффициент c t равен 1,0.

Здание будет построено в городе, этажность не превышает окружающие строения, расположенные на расстоянии двух высот здания. Коэффициент c b следует принять равным 1,0.

Таким образом, расчетное значение равно: S 0 = c b c t µ S g =1,0*1,0*0,7*120 =94 кг/м2

Для расчета прочности, и не только конструкции крыши, но и фундамента, несущих элементов строения, применяем коэффициент надежности 1,4, получив для проектных вычислений значение 131,6 кг/м2.

Что получаем в итоге всего

После проведения всех расчетов получим состав конструктивных элементов, количество балок, вес крыши с учетом снеговой и ветровой нагрузки, и сможем просчитать общий вес крыши. Останется оценить распределение весового воздействия на стену, сравнив ее с прочностью материала стены, и убедиться, что стена выдержит.

Здесь стоит иметь в виду, что запас прочности стены должен составлять не менее 25-30%, ведь даже в спокойных регионах не редкость очень сильные ветры или обильные снегопады, и пиковая нагрузка может кратковременно превысить расчетную. Как правило, такие воздействия скоротечны, и стропильная система выдержит, но если у стены нет запаса прочности, то сами понимаете, может произойти разрушение связки мауэрлат – стена.

Поэтому отнеситесь с вниманием к данному вопросу, используйте эту статью, чтобы если и не рассчитать все самому, то проконтролировать расчеты проектировщика

Комментировать
0
861 просмотров
Это интересно

Русские никогда не жили в избах Занимательные факты
197 комментариев