Теплота парообразования воды при атмосферном давлении

Теплота парообразования воды при атмосферном давлении

Теплота парообразования воды при атмосферном давлении
СОДЕРЖАНИЕ
0
703 просмотров
04 января 2021

Как организовать работу

Водяной пар в воздухе, плотность водяного пара:

Водяной пар – газообразное агрегатное состояние воды.

Водяной пар не имеет цвета, вкуса и запаха.

Водяной пар, как и вода, – это бинарное неорганическое соединение с химической формулой H2O.

Молекула водяного пара, как и молекула воды, состоит из двух атомов водорода и одного – кислорода, которые соединены между собой ковалентной связью.

Водяной пар содержится в воздухе – в атмосфере Земли (в основном в тропосфере). Концентрация водяного пара в воздухе (в атмосфере Земли) составляет в среднем 0,25  % по массе от массы всей атмосферы Земли. Концентрация водяного пара в воздухе (в атмосфере Земли) по объему (в пересчете на сухой воздух) значительно варьируется от примерно 0,0001 % по объему в самых холодных частях атмосферы до 5% по объему в горячих, влажных воздушных массах.

Водяной пар легче и менее плотный, чем сухой воздух. Так, плотность сухого воздуха при нормальном атмосферном давлении (101 325 Па или 1 атм.) и температуре 0 °C составляет 1,292 кг/м3 (или 0,001292 г/см3), при температуре 20 °C – 1,2041 кг/м3 (или 0,0012041 г/см3). Плотность водяного пара при нормальном атмосферном давлении (101 325 Па или 1 атм.) и температуре 0 °C составляет 0,803 кг/м3 (или 0,000803 г/см3), при температуре 20 °C – 0,749 кг/м3 (или 0,000749 г/см3).

Плотность водяного пара (m/V) находится с использованием уравнения Клайперона – Менделеева (уравнения состояния идеального газа):

где

p – давление газа,

V – объём газа,

R – универсальная газовая постоянная, R ≈ 8,314 Дж/(моль⋅К),

T – термодинамическая температура газа, К,

m – масса газа,

M – молярная масса газа,

m/V – плотность газа.

.

Зависимость температуры кипения воды от давления:

Температура кипения — это температура, при которой происходит кипение жидкости, которая находится под постоянным давлением. Согласно уравнению Клапейрона — Клаузиуса с ростом давления температура кипения увеличивается, а с уменьшением давления температура кипения соответственно уменьшается.

Если жидкость получает теплоту, то она будет нагреваться и через некоторое время начнет кипеть. По наблюдениям этот про­цесс сопровождается образованием в объеме жидкости пузырьков насыщенного пара. С повышением температуры их количество на стенках сосуда возрастает, а размеры уве­личиваются. При определенной температуре давление пара в пузырьках становится рав­ным давлению в жидкости, и они под дей­ствием силы Архимеда начинают всплывать. Когда такой пузырек достигает поверхности жидкости, он лопается и выбрасывает пар наружу.

Кипение — это внут­реннее парообразование, которое происходит во всем объеме жидкости при температуре, когда давление насыщенного пара равно дав­лению в жидкости.

Установлено, что при кипении темпе­ратура жидкости остается постоянной— при достижении температуры кипения все пре­доставленное количество теплоты идет на парообразование. Если жидкость не получает теплоту, кипение прекратится, поскольку не будет поступать энергия для внутреннего парообразования.

Кипение осуществляется при температуре, когда давление насыщенного пара в пузырьках равно давлению в жидкости.

Каждое вещество имеет собственную тем­пературу кипения. Очевидно, что ее значение определяется давлением насыщенного пара при данной температуре, поскольку кипение наступает тогда, когда давление насыщенного пара уравнивается с давле­нием в жидкости. Поэтому температура кипения жидкостей зависит от внешнего давления — чем оно выше, тем выше долж­на быть температура кипения, и наоборот.

Температура кипения воды при этом давлении: o C

Удельный объем насыщенного пара: м 3 /кг

Удельная теплота парообразования: кДж/кг

Источник

Насыщенный водяной пар

Вернемся к эксперименту. Итак, у нас в закрытой банке жидкость. Что происходит? Испарение воды. Процесс начинается при низкой плотности воздуха. Благодаря пару, давление на поверхность жидкости возрастает, оно препятствует движению молекул. Их все меньше и меньше отрывается от воды. Наступает момент, когда образуются капли влаги. Этот процесс называется «конденсация». Когда скорость образования пара равна скорости конденсации, возникает термодинамическое равновесие. Пар в этот момент считается насыщенным. Жидкость и газ уравновешивают друг друга. Такое состояние достигается при определенных условиях, важные параметры:

  1. Температура, изменение на долю градуса нарушает равновесие. При повышении парообразование ускоряется, при понижении увеличивается процесс конденсации влаги.
  2. Давление, при его понижении молекулы жидкой фазы свободнее передвигаются, отрываются от поверхности, начинается испарение воды.

Почему не учитывается объем банки? Он не меняет термодинамических свойств воды и водяного пара в состоянии насыщения. Допустим, крышка экспериментальной банки опустилась ниже, объем уменьшился. К чему это приведет? Пар будет ускоренно конденсироваться до момента равновесия. При увеличении объема ускорится парообразование, но замкнутая система опять придет в равновесное состояние.

Изучая термодинамику, легко понять, почему пар обжигает сильнее воды той же температуры. Что такое кипение? Состояние, при котором жидкая фаза активно превращается в парообразное состояние. Следовательно, происходит обратный процесс конденсации, он сопровождается выделением теплоты. За счет этого ожог от пара сильнее.

Удельная теплоемкость возрастает, если повышается температура воды. Процесс парообразования виден в момент кипения. При повышении давления температура газов достигает 200°С, это свойство используется в теплотехнике, горячим, вязким паром заполняют теплообменники.

Давление насыщенного водяного пара

Формула p=nkT указывает на прямую зависимость давления идеального газа (p) и его температуры (Т). Параметр n –число молекул, содержащихся в заданном объеме, характеризует плотность пара. Постоянная Больцмана k устанавливает взаимосвязь температуры с энергией образования вещества (энтальпия).

Пар нельзя сравнивать с идеальным газом. Его давление при повышении температуры растет быстрее из-за повышения плотности. Концентрация частиц в неизменном объеме возрастает. Эти особенности свойств водяного пара необходимо учитывать при расчетах давления насыщенного водяного пара. Если в идеальном газе возрастает энергия ударов молекул о стенки сосуда, то в насыщенном паре существенно возрастает число ударов за счет увеличения концентрации активных частиц.

Плотность насыщенного водяного пара

Плотностью называется отношение массы вещества к его объему. Этот параметр характеризует расстояние между отдельными молекулами. В жидкой фазе они сцепляются между собой, в твердой расположены симметрично относительно друг друга. В газообразном находятся на произвольном удаленном расстоянии, чем объясняется отличие плотности водяного пара от плотности воды.

Теперь подробно рассмотрим, какое влияние оказывает на плотность насыщенных водяных паров изменение температуры. Она непостоянна из-за изменения массы газообразной фазы:

  • при повышении температуры она возрастает за счет ускорения испарения;
  • при понижении – падает, вода активно конденсируется.

По сути, она должна постоянно меняться, так как частицы воды непрерывно движутся, переходят из одного агрегатного состояния в другое. Но при динамическом равновесии концентрация неизменна: сколько молекул испарится, столько же конденсируется. Показатели устанавливаются экспериментально для каждой температуры. Их значения сведены в таблицы.

Источник

Пар… основные понятия

Влияние присутствия воздуха на температуру пара

Рис. 1 поясняет, к чему приводит присутствие воздуха в паропроводах, а в Таблице 1 и на Графике 1 показана зависимость снижения температуры пара от процентного содержания в нем воздуха при различных давлениях.

Влияние присутствия воздуха на теплопередачу

Воздух, обладая отличными изоляционными свойствами, может образовать, по мере конденсации пара, своеобразное «покрытие» на поверхностях теплопередачи и значительно понизить ее эффективность.

При определенных условиях, даже такое незначительное количество воздуха в паре как 0,5% по объему может уменьшить эффективность тепло — передачи на 50%. См. Рис.1

СО2 в газообразной форме, образовавшись в котле и перемещаясь вместе с паром, может растворится в конденсате, охлажденном ниже температуры пара, и образовать угольную кислоту. Эта кислота весьма агрессивна и, в конечном итоге «проест» трубопроводы и теплообменное оборудование. См. Рис.2. Если в систему попадает кислород, он может вызвать питтинговую коррозию чугунных и стальных поверхностей. См. Рис. 3.

Паровая камера со 100% содержанием пара. Общее давление 10 бар. Давления пара 10 бар температура пара 180°С

Рис.1. Камера, в которой находится смесь пара и воздуха, передает только ту часть теплоты, которая соответствует парциальному давлению пара, а не полному давлению в ее полости.

Паровая камера с содержанием пара 90%

И воздуха 10%. Полное давление 10 бар. Давление

Пара 9 бар, температура пара 175,4°С

Снижение температуры паро-воздушной смеси в зависимости от содержания воздуха

Температура насыщ. пара

Температура паро-воздушной смеси от к-ва воздуха в объему,°С

Источник

Таблицы насыщенного водяного пара

Таблицы насыщенного водяного пара — необходимый инструмент для любого инженера, работающего с паром. Обычно их используют для определения зависимости температуры насыщенного пара от парового давления или, наоборот, давления от температуры насыщенного пара. Кроме этих параметров, таблицы обычно включают и другие показатели, такие как удельная энтальпия (h) и удельный объём (v).

Данные таблиц насыщенного водяного пара всегда отображают информацию о конкретной точке насыщения известной как точка кипения. Это точка, в которой вода (жидкость) и пар (газ) могут сосуществовать при одинаковых температуре и давлении. Так как H2O может быть и в жидком, и в газообразном состоянии, нам будут необходимы две подборки данных: данные о насыщенной воде (жидкости), которые обычно обозначаются подстрочной буквой f, и данные о насыщенном паре (газе), которые обозначают подстрочной буквой g.

Обозначения:

  • P = Давление пара/воды
  • T = Точка насыщения пара/воды (точка кипения)
  • vf = Удельный объём насыщенной воды (жидкости)
  • vg = Удельный объём насыщенного пара (газа)
  • hf = Удельная энтальпия насыщенной воды (энергия, необходимая для подогрева воды от 0 °C до точки кипения)
  • hfg = Скрытое тепло испарения (энергия, необходимая для трансформации насыщенной воды в насыщенный пар)
  • hg = Удельная энтальпия насыщенного пара (энергия, необходимая для получения пара из воды с температурой 0 °C)

При нагреве обычно используется скрытое тепло испарения (Hfg). Как видно из таблицы, это скрытое тепло испарения будет выше при более низком давлении. По мере увеличения парового давления скрытое тепло постепенно снижается и достигает 0 при суперкритическом давлении, например, 22.06 МПа.

Различные состояния воды

Ненасыщенная вода

Для просмотра файла необходим Flash Player

Эта вода находится в самом узнаваемом ее состоянии. Приблизительно 70% человеческого веса — это вода. Когда она находится в жидком состоянии, водородные связи держат молекулы ее вместе. В результате ненасыщенная вода имеет относительно компактную, плотную и стабильную структуру.

Насыщенный пар

Для просмотра файла необходим Flash Player

Для просмотра файла необходим Flash Player

Молекулы насыщенного пара невидимы. Когда насыщенный пар выпускается в атмосферу из трубопровода, часть его конденсируется, передавая свое тепло окружающему воздуху и образовывая облака белого пара (крошечные капли воды). Если в паре есть такие капельки, то он называется влажным.

В паровых системах пар, выходящий из конденсатоотводчиков часто ошибочно принимается за насыщенный (острый) пар, в действительности же это — выпар. Разница между ними состоит в том, что насыщенный пар мнгновенно становится невидимым уже на уровне выпускного отверстия трубы, тогда как выпар содержит мелкие капли воды в момент образования.

Перегретый пар

Для просмотра файла необходим Flash Player

Для просмотра файла необходим Flash Player

Пока перегретый пар находится в своем перегретом состоянии, он не будет конденсироваться, даже если вступит в контакт с атмосферой, а его температура упадет. В результате, клубы пара образовываться не будут. Перегретый пар содержит больше тепла, чем насыщенный пар при том же давлении, а его молекулы двигаются быстрее, поэтому его плотность ниже (т.е. его удельный объем больше).

Сверхкритическая вода

Для просмотра файла необходим Flash Player

Хотя визуальное наблюдение не представляется возможным, но эта вода находится в состоянии, которое не является ни жидким, ни газообразным. В общих чертах, молекулярное движение ближе к газу, а плотность больше похожа на плотность жидкости.

Основные сферы применения пара Как читать таблицы водяного пара

Также на TLV.com

  • Влажный пар или сухой пар: о роли паросодержания
  • Основные сферы применения пара
  • Таблица свойств насыщенного пара по давлению

Разные единицы измерения: избыточное и абсолютное давление

Таблицы насыщенного пара также используют два различных вида давления: абсолютное и манометрическое (избыточное).

  • Абсолютное давление — это нулевая точка по отношению к абсолютному вакууму.
  • Манометрическое давление — это нулевая точка по отношению к атмосферному давлению (101.3 кПа).

Таблица насыщенного пара с абсолютным давлением

Давл. (абс.) Темп. Удельный объём Удельная энтальпия
кПа °C м 3 /кг кДж/кг
P T Vf Vg Hf Hfg Hg
20 60.06 0.0010103 7.648 251.4 2358 2609
50 81.32 0.0010299 3.240 340.5 2305 2645
100 99.61 0.0010432 1.694 417.4 2258 2675

  Как измерить артериальное давление в динамике

Таблица насыщенного пара с избыточным давлением

Давл. (изб.) Темп. Удельный объём Удельная энтальпия
кПа изб. °C м 3 /кг кДж/кг
P T Vf Vg Hf Hfg Hg
99.97 0.0010434 1.673 419.0 2257 2676
20 105.10 0.0010475 1.414 440.6 2243 2684
50 111.61 0.0010529 1.150 468.2 2225 2694
100 120.42 0.0010607 0.8803 505.6 2201 2707

Избыточное давление было придумано для простоты измерения давления по отношению к тому, которое мы обычно испытываем.

В таблицах пара, составленных на основе манометрического давления, атмосферное давление определяется как 0, а в таблицах с абсолютным давлением — 101.3 кПа. А для того чтобы отличать избыточное давление от абсолютного в конце добавляют «изб.», например, кПа изб. или фт/кв. дюйм изб..

Для единиц СИ

Давление пара = Давление пара + 101.3 кПа

Важное замечание: Проблемы могут возникнуть в том случае, если перепутать абсолютное и манометрическое давление, именно поэтому надо быть особенно внимательными с единицами давления, указанными в таблице

Из чего делают

Изначально тюль делали вручную из тончайших шелковых, льняных или хлопковых нитей. Была эта ткань привилегией богачей. Намного позднее, появились машины, на которых делали хлопковый материал. Он был уже намного дешевле. После того как придумали синтетические нити,ассортимент стал разнообразнее, а цены доступнее.

Сегодня шелк используют редко по причине высокой цены, а хлопок и лен — только в сочетании с синтетическими волокнами. В чистом виде натуральные волокна быстро загрязняются, становятся серыми, а еще при стирке теряет форму и изменяет размеры (садится или вытягивается).

Современный тюль делают в основном их полиэфирных, полиамидных и смесовых волокон.  Для получения гладкой поверхности используют полиамидные нити. Они прочные и упругие. Узоры на такую основу наносят при помощи полиамидных нитей. Они мягкие и хорошо смотрятся в вышивке.

Тюль бывает нескольких видов:

  • Органза. Упругая, достаточно жесткая ткань, которая в то же время легкая и прозрачная. Может быть с блеском или матовой. При драпировке создает упругие складки.

  • Вуаль. Мягкая и полупрозрачная, хорошо драпируется. Если вы хотите иметь тюль с мягкими, струящимися складками, красивее всего ляжет вуаль.

  • Кисея или нитяной тюль (шторы). Это отдельные нити, которые могут местами переплетаться, а могут так и быть просто отдельными нитями. Такой тюль для спальни может быть вторым слоем, для создания декоративного эффекта.

  • Сетка или сетчатый тюль. По названию понятно, что ячейки такой ткани крупные. Ячейки сетки бывает разного размера и формы, плотности. Это может быть просто «дырчатая» ткань или тонкая сетка с вышивкой.

Что такое влажность воздуха

Существуют несколько единиц измерения относительной влажности воздуха. 1. Абсолютная влажность — это количество воды в единице объёма воздуха, А(г/м3). 2. Для определения второй единицы измерения нужно внимательно посмотреть на рисунок, отображающий движение молекул воды в закрытом сосуде, залитом до определённого уровня водой. Через некоторое время в этом сосуде два процесса: испарения и конденсации молекул воды выровняются и мы получим насыщенный водяной пар, который создаёт давление на стенки сосуда равное давлению насыщенного водяного пара, Ps(Ра). В воздухе всегда присутствуют молекулы воды, но их концентрация ниже, чем над водной поверхностью. Они так же, как и другие молекулы воздуха создают давление. Это давление, создаваемое именно молекулами воды, называется парциальным давлением водяного пара, P(Па). Отношение парциального давления водяного пара к насыщенному давлению водяного пара, выраженное в процентах называется относительной влажностью воздуха:

3. Из второй единицы измерения следует третья. Если в замкнутом объёме с определённой влажностью уменьшать температуру, то будет увеличиваться относительная влажность воздуха. При определённой температуре относительная влажность станет равной 100 %. Эта температура называется температурой точки росы. Для отрицательных температур существует своя точка росы — точка инея. Само определение подсказывает один из способов определения влажности воздуха в некотором объёме. Нужно медленно охлаждать какой-то предмет, контролируя его температуру. Температура, при которой на предмете возникнет водяная плёнка сконденсировавшихся молекул воды, будет равна температуре точки росы в данном объёме.

Ниже приведены выражения для расчёта давления насыщенного водяного пара над поверхностью воды Psw и льда Psi в зависимости от температуры:

Значения давления насыщенного пара над поверхностью воды (Рsw) и льда (Рsi)

Т,°C

psw, Па

psi, Па

Т,°C

psw, Па

psi, Па

Т,°C

Источник

Плюсы ванной с окном

Процесс кипячения воды: 3 основных стадии

Кипение – это интенсивное парообразование, которое происходит при нагревании жидкости по всему объёму при определённой температуре.

Весь процесс кипения воды сопровождается выделением пара. Это одно из состояний воды. При парообразовании температура пара и воды остаются постоянными до тех пор, пока жидкость не изменит свое агрегатное состояние. Это явление объясняется тем, что при кипении вся энергия расходуется в преобразование воды в пар.

В воде растворены молекулы воздуха (газов). При нагревании газ превращается в воздушные пузырьки. При достижении достаточной температуры они лопаются, создаётся характерный шум.

Процесс можно разделить на 3 стадии:

  1. Появление небольших пузырьков вдоль стенок сосуда. Их количество стремительно увеличивается.
  2. Массовый подъем пузырьков и увлечения их объема. Помутнение воды, затем «побеление».
  3. Интенсивное бурление. Пузырьки увеличиваются в размере, поднимаются и лопаются, выпуская пар. Слышен характерный звук кипения.

Что такое кипячёная вода?

Это вода, ранее доведенная до температуры кипения. Сырая вода в своем составе может содержать различные бактерии, микроорганизмы. В водопроводе больших городов много хлора и различных других химических веществ. Процесс кипячения обезвреживает многие микробы. Однако не все бактерии и тяжёлые металлы убиваются в кипящей воде, поэтому питьевая вода происходит предварительную проверку пригодности.

Как работает пароструйный инжектор

Пар, который нагревает жидкость, попадает в сопло устройства, но перед этим давление его повышается. Когда из сопла пар выходит он преобразуется в определенную энергию, именуемую кинетической, скорость увеличивается и разгоняется до скорости звука. Как только пар начнет выходить из сопла его давление резко упадет и станет меньше, чем атмосферное, в камере произойдет разряжение. В камере пар и вода перемешиваются, где пар отдает тепло воде и вступает в процесс конденсирования. При перемешивании конденсат принимает температуру воды. Смесь воды и конденсата имеет высокую скорость и переходит в диффузор, где происходит замещение кинетической энергии потенциальной. Инжектор становится своего рода наносом для воды, вода в холодном виде поступает просто, а выходит под большим давлением.

Процессы нагревания очень распространенные процессы в химической, нефтяной и в пищевой промышленности. Технические процессы проводятся в специальных агрегатах разной конструкции. Процесс в теплообменнике прост, один теплоноситель отдает тепло другому. Если агрегатное состояние жидкости меняется, то температура не меняется. Нагревание водяным паром относится к процессу умеренного нагревания. Нагревание происходит просто и легко отрегулировать температуру нагревания. Даже при большой теплоте образования конденсата, расход пара небольшой.

Два формата: на основе давления и температуры

Так как давление и температура насыщенного пара напрямую связаны друг с другом, таблицы пара обычно доступны в двух форматах: на основе давления и температуры. В обоих содержится одинаковая информация, но классифицирована она по-разному.

Таблица насыщенного водяного пара, основанная на давлении

Давл. (изб.) Темп. Удельный объём Удельная энтальпия
кПа изб. °C м 3 /кг кДж/кг
P T Vf Vg Hf Hfg Hg
99.97 0.0010434 1.673 419.0 2257 2676
20 105.10 0.0010475 1.414 440.6 2243 2684
50 111.61 0.0010529 1.150 468.2 2225 2694
100 120.42 0.0010607 0.8803 505.6 2201 2707

Таблица насыщенного водяного пара, основанная на температуре

Темп. Давл. (изб.) Удельный объём Удельная энтальпия
°C кПа изб. м 3 /кг кДж/кг
T P Vf Vg Hf Hfg Hg
100 0.093 0.0010435 1.672 419.1 2256 2676
110 42.051 0.0010516 1.209 461.4 2230 2691
120 97.340 0.0010603 0.8913 503.8 2202 2706
130 168.93 0.0010697 0.6681 546.4 2174 2720
140 260.18 0.0010798 0.5085 589.2 2144 2733
150 374.78 0.0010905 0.39250 632.3 2114 2746

Гипсовый декоративный каменеть

Свойство — насыщенный пар

Свойства насыщенных паров дифенила и дифенилоксида приведены в виде диаграмм на рис. 63а и 636, где даны температура, давление, скрытая теплота испарения и теплосодержание.

Свойства насыщенного пара () можно считать просто предельными значениями свойств в области перегрева, если давление равно давлению насыщенного пара при данной температуре или температура равна температуре кипения при рассматриваемом давлении. Подобным же образом свойства насыщенной жидкости () являются предельными значениями для жидкой области, если жидкость находится при температуре кипения. Из уравнения ( 43) очевидно, что сухость пара в области двух фаз на диаграмме равна расстоянию по горизонтали от, данной точки до кривой жидкости, деленному на общее расстояние по горизонтали между двумя пограничными кривыми. Это служит основой для проведения линии постоянной сухости пара на такой диаграмме.

Изучая свойства насыщенного пара, мы установили ( § 293), что каждой температуре при обычных условиях соответствуют определенные плотность и давление насыщенного пара.

Эти свойства насыщенных паров низкокипящих жидкостей положены в основу работы паровых манометрических термсметров. Однако шкала термометров этого типа является неравномерной, так как изменение давления паров с изменением температуры неравномерно ( см. фиг.

Большие отклонения свойств насыщенных паров многих жидкостей от свойств идеального газа приводят к тому, что их давление описывают с помощью различных эмпирических соотношений.

В вакуум-паровой системе использовано свойство насыщенного пара снижать температуру при понижении его давления. Возможность поддержания температуры ниже 100 С на поверхностях нагревательных приборов объясняется созданием в системе вакуума ( давления меньше атмосферного) при помощи вакуум-насоса, отсасывающего конденсат из системы и нагнетающего его в котел.

Растворимость воды в жидких фреонах ( / по весу.| Свойства насыщенных паров фреона-11.

В табл. 6 приведены свойства насыщенных паров фреона-11, а на фиг.

Свойства перегретого пара значительно отличаются от свойств насыщенного пара. Чем больше сптюиг перегрева, тем ближе свойства перегретого пара к свойствам идеального газа Отклонение этих свойств объясняется конечными объемами молекул пара и наличием сил взаимодействия ыс-жду ними.

Свойства перегретого пара сильно отличаются от свойств насыщенного пара.

Свойства перегретого пара резко отличаются от свойств насыщенного пара и приближаются к свойствам газов.

Обсуждаются экспериментальные изотермы и область двухфазных состояний: Описываются свойства насыщенного пара и динамический характер равновесия пар — жидкость. Рассматриваются свойства вещества в критическом состоянии. Обсуждаются скрытая теплота перехода и общая характеристика фазовых переходов первого рода.

Свойства перегретого пара ( точка d, рис. 1.16) существенно отличаются от свойств насыщенного пара.

Этот основной недостаток парового отопления исключается в так называемой вакуум-паровой системе, в которой использовано свойство насыщенного пара, заключающееся в том, что его температура снижается при понижении давления. В этой системе давление снижается ниже атмосферного при помощи вакуум-насоса, которым конденсат отсасывается из системы и перекачивается в котел. В результате снижения давления температура пара в приборах вакуум-паровой системы поддерживается в пределах 60 — 90 С.

Следует рассмотреть также и изменения энтропии, внутренней энергии и теплоемкости при адсорбции пара, потому что свойства насыщенного пара зависят от температуры.

Комментировать
0
703 просмотров
Это интересно

Русские никогда не жили в избах Занимательные факты
197 комментариев