Теплопроводность утеплителей в таблице

Теплопроводность утеплителей в таблице

Теплопроводность утеплителей в таблице
СОДЕРЖАНИЕ
0
23 просмотров
08 января 2021

Утеплители PIR

В конце 2015 года компанией ТЕХНОНИКОЛЬ было запущено производство PIR. Здесь на уникальной автоматизированной производственной линии изготавливаются плиты высочайшего качества Logicpir, стремительно завоевывающие рынок стройматериалов.

Производство PIR плит

Основными “ингредиентами”, входящими в состав утеплителя, являются полиол и изоцианат. Компоненты смешивают под давлением, таким образом гарантируются все заявленные физико-химические характеристики материала в любой его точке.

После смешивания в миксере смесь через форсунки подается на контур утеплителя — фольгированную обкладку толщиной 50 мкм, обеспечивающую влаго- и парозащиту. На этом этапе происходит контролируемое увеличение пенящейся смеси в объеме (зависит от подобранной рецептуры с учетом скорости реакции), после чего плита утеплителя накрывается верхним слоем обкладки и поступает в паттерностер. Последние этапы производства — раскрой, профилирование торцов и упаковка готовых изделий.

Упаковка плит Logicpir Балкон

Изначально PIR разрабатывался для военно-космической отрасли путём модификации полиуретана. Именно этим материалом были изолированы топливные баки ракет, а сегодня PIR применяется для утепления кровель, стен, полов, потолков, лоджий, бань и не только.

Применение эффективной теплоизоляции Logicpir

Настолько широкую область применения утеплитель получил благодаря модифицированной молекулярной структуре и такому сочетанию свойств как:

  • плиты пир обладают прочностью 15 тонн на м кв. Это значит, что плиты подходят для мест с повышенной пешеходной нагрузкой;
  • logicpir относится к самозатухающим материалам и может служить преградой распространения огню;
  • безопасность для здоровья человека. Соответствует условиям применения в школьных, дошкольных, лечебно-профилактических учреждениях;
  • негигроскопичность. Водопоглощение менее 1%. Утеплитель гарантированно не отсыреет даже в парной при экстремальных условиях сочетания высокой влажности и температуры;
  • рекордно низкая теплопроводность 0,022 Вт/м*К, это даже ниже, чем коэффициент теплопроводности воздуха (0,025 Вт/м*К). Такая теплопроводность позволяет укладывать меньшую толщину теплоизоляции;
  • пир облицован фольгой или алюмоламинатом, поэтому он относится к классу отражающей изоляции.

Преимущества плит Logicpir

PIR-плиты устойчивы к динамическим нагрузкам и «вытаптыванию», плотно стыкуются и благодаря очень малому весу не оказывают повышенных нагрузок на несущие узлы здания. Особенно актуально это качество при реконструкции эксплуатируемых кровель. Кроме того, возможно сокращение затрат на логистику и подъем плит утеплителя на кровлю именно благодаря их небольшому весу.

Монтаж PIR-плит возможен в любое время года, в отличие от напыляемого полиуретанового утеплителя, который наносится строго в температурном интервале от +5°С до +35°С, и о котором пойдет речь далее.

Шаг 4: Сравниваем. Таблица теплопроводности утеплителей

В таблице приводится сравнение утеплителей по теплопроводности заявленной производителями и соответствующие ГОСТам:

Наименование материала Коэффициент теплопроводности Ват/м2
Пенопласт 0.03
Минвата 0,049-0,6
Пенофол 0,037-0,049
Пеноизол 0,21-0,24
Пеностекло 0.08
Пенополиуретан (ППУ) 0.02
Эковата (целюлоза) 0.04

Сравнительная таблица теплопроводности строительных материалов, которые не принято считать утеплителями:

   
Наименование материала Коэффициент теплопроводности Ват/м2
Бетон 1.51
Гранит 3.49
Мрамор 2.91
Сталь 58

Показатель теплопередачи лишь указывает на скорость передачи тепла от одной молекуле к другой. Для реальной жизни этот показатель не так важен. А вот без теплового расчета стены не обойтись. Сопротивление теплопередаче — величина обратная теплопроводности. Речь идет о способности материала (утеплителя) задерживать тепловой поток. Чтобы рассчитать сопротивление теплопередаче нужно разделить толщину на коэффициент теплопроводности. На примере ниже показан расчет теплового сопротивления стены из бруса толщиной 180 мм.

Как видно, теплосопротивление такой стены составит 1,5. Достаточно? Это зависит от региона. В примере показан расчет для Красноярска. Для этого региона нужный коэффициент сопротивления ограждающих конструкций установлен на уровне 3,62. Ответ ясен. Даже для Киева, который намного южнее данный показатель равняется 2,04.

А значит, способности деревянного дома сопротивляться потере тепла недостаточно. Необходимо утепление, а уже, каким материалом — рассчитывайте по формуле.

Что нужно знать о теплопроводности пенопласта

Способность материала к теплопередаче, проводить или задерживать тепловые потоки принято оценивать коэффициентом теплопроводности. Если посмотреть на его размерность – Вт/м∙С о , то становится понятным, что это величина удельная, то есть определенная для следующих условий:

  • Отсутствие влаги на поверхности плиты, то есть коэффициент теплопроводности пенопласта из справочника — это величина, определенная в идеально сухих условиях, которых в природе практически не существует, разве что в пустыне или в Антарктиде;
  • Значение коэффициента теплопроводности приведено к толщине пенопласта в 1 метр, что очень удобно для теории, но как-то не впечатляет для практических расчетов;
  • Результаты измерения теплопроводности и теплопередачи выполнены для нормальных условий при температуре 20 о С.

Согласно упрощенной методике, при расчетах термического сопротивления слоя пенопластового утеплителя нужно умножить толщину материала на коэффициент теплопроводности, затем умножить или разделить на несколько коэффициентов, используемых для того, чтобы учесть реальные условия работы теплоизоляции. Например, сильное обводнение материала, или наличие мостиков холода, или способ монтажа на стены здания.

Насколько теплопроводность пенопласта отличается от других материалов, можно увидеть в приведенной ниже сравнительной таблице.

На самом деле не все так просто. Для определения значения теплопроводности можно составить своими руками или использовать готовую программу для расчета параметров утепления. Для небольшого объекта обычно так и поступают. Частник или самозастройщик может вообще не интересоваться теплопроводностью стен, а уложить утепление из пенопластового материала с запасом в 50 мм, что будет вполне достаточно для самых суровых зим.

Большие строительные компании, выполняющие утепление стен на площади десятков тысяч квадратов, предпочитают поступать более прагматично. Выполненный расчет толщины утепления используется для составления сметы, а реальные значения теплопроводности получают на натурном объекте. Для этого наклеивают на участок стены несколько различных по толщине листов пенопласта и измеряют реальное термосопротивление утеплителя. В результате удается рассчитать оптимальную толщину пенопласта с точностью до нескольких миллиметров, вместо приблизительных 100 мм утеплителя можно уложить точное значение 80 мм и сэкономить немалую сумму средств.

Насколько выгодно использование пенопласта в сравнении с типовыми материалами, можно оценить из приведенной ниже диаграммы.

Цементно-песчаная

В зависимости от прочности покрытия, выбирается пропорции песка к цементу – 1:4 или 1:3. Это также зависит от марки цемента и фракции песка. Данный раствор практически не эластичный, поэтому его используют для минеральных поверхностей в качестве основного покрытия, а не заделывании щелей и трещин. При плотности слоя 1800 кг/м 3 коэффициент теплопроводности штукатурки будет равен 1,2.

Это материал для отделки внутренних поверхностей помещения. Его применение подходит, если температура окружающей среды колеблется от +5 до +25 градусов. Теплопроводность гипсовой штукатурки также зависит от плотности ее нанесения и возможных добавок. Обычно коэффициент теплопроводности гипсовой штукатурки при плотности материала 800кг/м 3 – 0.3.

Сравнительные характеристики самых популярных теплоизоляций

Толщина облицовки зависит от стеновой конструкции

При теплоизоляции чаще всего используются следующие энергосберегающие материалы:

  • Волокнистые изоляции – утеплители минеральная вата, стекловата, шлаковая вата, каменная вата;
  • Полимерные изоляции – пенополистирол, пенопласт, пенополиэтилен, пенополиуретан и другие.

Подобрать подходящие материалы для теплоизоляции дома или квартиры трудно, так как реклама позиционирует каждый, как «инновационный», «новейший» и «самый лучший». Попробуем сориентироваться в этом разнообразии. И, главное, не забудьте изучить все характеристики, указанные производителем на упаковке.

Нижеприведенная сравнительная таблица теплопроводности утеплителей в зависимости от плотности поможет выбрать материал в зависимости от климатической зоны и степени теплоизоляции.

Стоимость указана в среднем в валюте евро, она может колебаться в пределах десяти процентов, в зависимости от региона

Многие задаются вопросом, что лучше – пенополистирол или минеральная вата. Выбор зависит от многих факторов. Сравнительная таблица утеплителей по свойствам поможет сделать правильный выбор.

Свойства

Пенополистирол

Минеральная вата
Теплоизоляционные

1

до 0,75
Звукопоглощающие

1

до 0,88
Устойчивость к воздействию агрессивных веществ

1

до 0,67
Предельные температурывнешняя поверхность
внутренняя поверхность

+750 C
+300 C

от -65 до +6000
от -30 до +6000
Экологичность

1

низкая
Огнестойкость

1

более 4,5
Стойкость на изгиб

1

менее 2
Вес

1

более 3
Стоимость

1

более 1,15
Ограничения

Необходима защитная изоляция армирующей сеткой и слоем штукатурки или другой декоративной отделкой

Должен быть защищен с внешней стороны
Требования по монтажу

нет

Монтаж при влажной погоде не рекомендован

Данная таблица сравнения утеплителей показывает, что если планируется дополнительная декоративно-защитная облицовка, то в качестве изоляции пенополистирол предпочтительней.

Также хотелось бы отметить, что изоляции на основе базальтовых волокон обладают высокой прочностью и низкой теплопроводностью. Поэтому если провести сравнение базальтовых утеплителей с пенополистиролом, то в качестве утепления для полов и кровель они предпочтительней в плане пожарной безопасности.

Коэффициенты теплопроводности строительных материалов в таблицах

Сегодня очень остро стоит вопрос рационального использования ТЭР. Непрерывно прорабатываются пути экономии тепла и энергии с целью обеспечения энергетической безопасности развития экономики как страны, так и каждой отдельной семьи.

Создание эффективных энергоустановок и систем теплоизоляции (оборудования, обеспечивающего наибольший теплообмен (например, паровых котлов) и, наоборот, от которого он нежелателен (плавильные печи)) невозможно без знания принципов теплопередачи.

Изменились подходы к тепловой защите зданий, возросли требования к строительным материалам. Любой дом нуждается в утеплении и системе отопления. Поэтому при теплотехническом расчёте ограждающих конструкций важен расчёт показателя теплопроводности.

Коэффициент теплопроводности материалов.

Ниже в таблице приведены значения коэффициента теплопроводности для некоторых материалов применяемых в строительстве.

Материал Коэфф. тепл. Вт/(м2*К)
Алебастровые плиты 0,470
Алюминий 230,0
Асбест (шифер) 0,350
Асбест волокнистый 0,150
Асбестоцемент 1,760
Асбоцементные плиты 0,350
Асфальт 0,720
Асфальт в полах 0,800
Бакелит 0,230
Бетон на каменном щебне 1,300
Бетон на песке 0,700
Бетон пористый 1,400
Бетон сплошной 1,750
Бетон термоизоляционный 0,180
Битум 0,470
Бумага 0,140
Вата минеральная легкая 0,045
Вата минеральная тяжелая 0,055
Вата хлопковая 0,055
Вермикулитовые листы 0,100
Войлок шерстяной 0,045
Гипс строительный 0,350
Глинозем 2,330
Гравий (наполнитель) 0,930
Гранит, базальт 3,500
Грунт 10% воды 1,750
Грунт 20% воды 2,100
Грунт песчаный 1,160
Грунт сухой 0,400
Грунт утрамбованный 1,050
Гудрон 0,300
Древесина — доски 0,150
Древесина — фанера 0,150
Древесина твердых пород 0,200
Древесно-стружечная плита ДСП 0,200
Дюралюминий 160,0
Железобетон 1,700
Зола древесная 0,150
Известняк 1,700
Известь-песок раствор 0,870
Ипорка (вспененная смола) 0,038
Камень 1,400
Картон строительный многослойный 0,130
Каучук вспененный 0,030
Каучук натуральный 0,042
Каучук фторированный 0,055
Керамзитобетон 0,200
Кирпич кремнеземный 0,150
Кирпич пустотелый 0,440
Кирпич силикатный 0,810
Кирпич сплошной 0,670
Кирпич шлаковый 0,580
Кремнезистые плиты 0,070
Латунь 110,0
Лед 0°С 2,210
Лед -20°С 2,440
Липа, береза, клен, дуб (15% влажности) 0,150
Медь 380,0
Мипора 0,085
Опилки — засыпка 0,095
Опилки древесные сухие 0,065
ПВХ 0,190
Пенобетон 0,300
Пенопласт ПС-1 0,037
Пенопласт ПС-4 0,040
Пенопласт ПХВ-1 0,050
Пенопласт резопен ФРП 0,045
Пенополистирол ПС-Б 0,040
Пенополистирол ПС-БС 0,040
Пенополиуретановые листы 0,035
Пенополиуретановые панели 0,025
Пеностекло легкое 0,060
Пеностекло тяжелое 0,080
Пергамин 0,170
Перлит 0,050
Перлито-цементные плиты 0,080
Песок 0% влажности 0,330
Песок 10% влажности 0,970
Песок 20% влажности 1,330
Песчаник обожженный 1,500
Плитка облицовочная 1,050
Плитка термоизоляционная ПМТБ-2 0,036
Полистирол 0,082
Поролон 0,040
Портландцемент раствор 0,470
Пробковая плита 0,043
Пробковые листы легкие 0,035
Пробковые листы тяжелые 0,050
Резина 0,150
Рубероид 0,170
Сланец 2,100
Снег 1,500
Сосна обыкновенная, ель, пихта (450…550 кг/куб.м, 15% влажности) 0,150
Сосна смолистая (600…750 кг/куб.м, 15% влажности) 0,230
Сталь 52,0
Стекло 1,150
Стекловата 0,050
Стекловолокно 0,036
Стеклотекстолит 0,300
Стружки — набивка 0,120
Тефлон 0,250
Толь бумажный 0,230
Цементные плиты 1,920
Цемент-песок раствор 1,200
Чугун 56,0
Шлак гранулированный 0,150
Шлак котельный 0,290
Шлакобетон 0,600
Штукатурка сухая 0,210
Штукатурка цементная 0,900
Эбонит 0,160

Коэффициент теплопроводности

Теплопроводность материалов – это способность сохранять тепловую энергию в помещении, один из важных параметров теплоизоляционных материалов. От характеристик теплоизоляторов зависит область их использования.

Коэффициент отображает количество тепла, которое проводится за 1 час через 1 кв. м поверхности утеплителя толщиной 1 м, учитывается также отсутствие утечек тепла по бокам и разность температур в 1°C для обеих поверхностей. То есть низкий параметр теплопроводности минеральной ваты говорит о минимальной теплопотере.

Коэффициент измеряется в Вт/ (м°C), изначально зависит от исходного сырья, влияющего на структуру волокнистости. Показатель не остается постоянно на одном уровне – так, за 3 года может увеличиться на 50% из-за попадания влаги в структуру. Параметр используется в расчетах необходимой толщины слоя теплоизолятора для внутренней или наружной отделки. Чем ниже показатель, тем тоньше слой понадобится для утепления строительной конструкции (крыша, стены, полы и другое) и, соответственно, тем меньше затраты.

Увеличение или уменьшение толщины слоя никак не повлияет на коэффициент. На значение теплопроводности влияет только выбранное сырье, но толщина утеплителя важна для защиты конструкций. Например, минеральная вата толщиной до 50 мм часто используется для внутреннего утепления помещений (полы, перегородки, межэтажные перекрытия и прочее), где теплопотери небольшие, и требуется сэкономить пространство. Для наружного утепления (фасады домов, крыши) применяют минвату с толщиной слоя 100-200 мм.

Коэффициенты теплопроводности с учетом исходного сырья составляют:

  • каменная (базальтовая) вата – 0,032-0,046 Вт/ (м°C);

  • шлаковая вата – 0,46-0,48 Вт/ (м°C);

  • стекловолоконная вата – 0,038-0,046 Вт/ (м°C).

Основным недостатком минваты является изменение уровня теплопроводности при попадании влаги на материал. Так, повышение влажности на 5% ухудшает теплоизоляционные свойства почти на 50%. А попавшая внутрь влага при замерзании может деформировать утеплитель и нарушить эксплуатационные свойства.

Менее всего подвержена изменению теплопроводности каменная вата, например, из базальта. Благодаря высокому уровню паропроницаемости (водопоглощение – менее 1%) и минимальной гигроскопичности избыток влаги испаряется, а не скапливается внутри изделия. По этой причине каменная вата часто используется при наружном утеплении (фасады, кровля зданий), и для теплоизоляции полов первых этажей, чтобы снизить теплопотери.

Не подходит для наружного утепления и применения в помещениях с высокой влажностью стекловолоконная и шлаковая вата. Связано это с повышением теплопроводности при увеличении уровня влажности. Так, при монтаже данных видов минваты требуется полная изоляция от влаги.

Минеральная вата: характеристики и свойства

Теплопроводность и особенности минеральной ваты

Теплопроводность — свойство предмета пропускать через себя тепло и отдавать его. У любого утеплителя есть своя теплопроводность, которая определяет качество материала, область ее использования.

Теплопроводность минеральной ваты зависит от марки и состава. В среднем показатели равны 0,034-0,05 Вт/м*К. Данные очень низкие, поэтому минеральная вата является прекрасным теплоизоляционным материалом.

Более рыхлая структура минваты имеет более низкий уровень теплопроводности, поэтому тепло лучше задерживается в воздушных «подушках».

У тяжелой минваты теплопроводность равна 0,48-0,55 Вт/м*К, а у легкой (с рыхлой структурой) теплопроводность составляет 0,035-0,047 Вт/м*К. Сравнить коэффициент теплопроводности минеральной ваты с различными видами утеплителей поможет таблица 1.

Таблица 1. Коэффициент теплопроводности популярных утеплителей
Название материала Коэффициент теплопроводности, Вт/м*К
Пенополиуретан 0,025
Вспененный каучук 0,03
Легкие пробковые листы 0,035
Стекловолокно 0,036
Пенопласт 0,037
Пенополистирол 0,04
Поролон 0,04
Легкая минеральная вата 0,039-0,047
Стекловата 0,05
Хлопковая вата 0,055

Чем ниже значение теплопроводности, тем лучше утеплитель. В сравнении с пенополистиролом и пенопластом, минеральная вата дает менее эффективные энергоемкие показатели. Но, если сравнить огнестойкость и вредность этих утеплителей, то минвата явно выигрывает.

Минеральная вата не горит и не содержит потенциально вредных веществ.

Одинаково сохраняют тепло:

  • пенополистирол экструдированный (40 кг/м3) при толщине слоя 95 мм;
  • минеральная вата (125 мг/м3) — 100 мм;
  • ДСП (400 кг/м3) — 185 мм;
  • дерево (500 кг/м3) — 205 мм.

Минеральная вата имеет низкий коэффициент теплопроводности, поэтому используется везде. Ее используют для утепления фасадов зданий, для внутреннего и наружного утепления.

Выбор минваты и расчет толщины утеплителя

Любое здание имеет свою норму теплосопротивления. Цифры зависят от климатической зоны и отличаются, исходя из региона.

У каждого утеплителя есть свой уровень теплопроводимости

Поэтому важно создать комфортные теплоизоляционные условия, которые сократят потребление энергии на отопление и охлаждение помещения

Если здание уже построено, расчеты нужно проводить, исходя из типа материала, его сечения, провести расчет теплопроводности, узнать цифры по теплоизоляции. Для домов, которые только строятся, больше возможностей для выбора стройматериалов, утеплителей и отделки.

Для расчетов толщины утеплителя нужно знать три цифры:

  • региональные стандарты теплосопротивления зданий;
  • коэффициент теплосопротивления стройматериала сооружения;
  • коэффициент теплопроводности утеплителя.

Расчет проводите по формуле:

K = R/N,

где K – цифра теплосопротивления стены; R — толщина слоя утеплителя; N — коэффициент теплопроводности.

Эта формула поможет рассчитать теплосопротивление стены. И, на основе полученных данных, можно вычислить, какая нужна теплоизоляция по толщине. Полный расчет толщины утеплителя вы найдете в статье «Толщина утеплителя для стен».

Технические характеристики минеральной ваты как утеплителя

Каждый теплоизоляционный материал хорош по-своему. Минеральная вата в том числе.

Даже больше: она во многом лучше другим утеплителей, т.к. экологична, не вредит здоровью, проста в монтаже и долго сохраняет свои эксплуатационные свойства.

Для примера в таблице 2 сравним технические характеристики минеральной ваты и экструдированного пенополистирола.

Таблица 2. Технические характеристики минеральной ваты и экструдированного пенополистирола
Наименование характеристики Минеральная вата Экструдированный пенополистирол
Прочность на сжатие при 10% линейной деформации, МПа 37-190 (+/- 10%) 28-53 (+/- 10%)
Водопоглощение по объему за 24 часа менее 0,4 0,2-0,4
Время самостоятельного горения, не более, c не горючий материал разгалаются ядовитые газы
Пожарно-технические характеристики по СНиП 21-01-97 НГ, Т2 Г1, Д3, РП1
Диапазон рабочих температур, °С -180 до +650°С

При t ≥ 250°С связующее испаряется. Плавится при 1000°С

-50 до +75 °С

При 200-250°С тепла разлагаются токсичные вещества

Коэффициент паропроницаемости, мг/(м.ч. Па) 0,31-0,032 0,007-0,012
Безопасность +
Тепловое сопротивление 0,036-0,045 0,03-0,033
Звуконепроницаемость и ветрозащитное действие + +
Влагостойкость + +
Высокая стойкость к нагрузкам +
Сохранение стабильных размеров +
Долговечность 50 лет (фактическая – 10-15 лет) 50 лет (фактическая – более 20 лет)
Удобство использования + +
Трудновоспламеняемость +

Что это такое?

Минеральная вата состоит из тонких спрессованных в мат волокон. Внешне похожа на медицинскую вату, только более жесткая. Минвата признается специалистами одним из лучших теплоизоляционных материалов, поскольку обладает такими достоинствами:

  • эффективность,

  • безопасность для человеческого здоровья,

  • легкость монтажа,

  • доступная стоимость.

Существует 3 разновидности минеральной ваты.

  1. Каменная – производится из расплавленных горных пород. Для ее создания преимущественно используются доломит, базальт и известняк. Такой утеплитель надежен и долговечен, отличается длительным сроком эксплуатации.

  2. Шлаковая – изготавливается из расплавленного доменного шлака. При создании используются отходы черных и цветных металлов. Этот утеплитель менее долговечен, по качеству уступает каменной вате – не стоит применять в климатических зонах с повышенным уровнем влажности и резкими перепадами температуры.

  3. Стеклянная (стекловолоконная) – получают из расплавленного стекловолокна, а также из песка, соды, известняка, доломита, буры. Основные характеристики – это высокая плотность, упругость и память формы. Имеет хорошие показатели теплопроводности и паропроницаемости, но характеристики уступают по качеству каменной (базальтовой) и шлаковой вате. Популярна благодаря соотношению качества и доступной стоимости.

Несмотря на разное исходное сырье, все разновидности минеральной ваты обладают общим свойством – материал рыхлый, с волокнистой структурой и низкой плотностью, и по этой причине имеющий низкую теплопроводность.

На теплопроводность минваты влияют минералогический состав, плотность и влажность. Средним показателем для минеральной ваты разных видов обычно считается 115 кг на 1 куб. м с водопоглощением не более 1% на объем. Диаметр волокна в среднем не более 0,2 мкм.

Связь ветрозащиты с теплопроводностью

Для внутреннего утепления стен, перегородок и перекрытий, при использовании минераловатных плит любого типа, проблемы с влажностью, как правило, не возникают. Однако создаваемая на их основе теплоизоляция фасадов нередко приводит к таким последствиям:

  1. Поток воздуха изнутри помещения проходит через утеплитель, незначительно снижая теплоизоляционные характеристики конструкции и изменяя положение «точки росы».
  2. Воздушный поток снаружи тоже попадает внутрь минераловатной плиты и имея влажность в пределах 80–100% напитывает материал.
  3. Теплопроводность влажной минваты заметно увеличивается. Особенно заметно это у шлаковаты, теряющей при этом до 55% своих характеристик.

Чем выше ограждающая конструкция, тем интенсивнее перемещается воздух, а это значит что утеплитель сильнее увлажняется.

Снижение теплопроводности будет ещё больше, если внешний слой материала имеет зазоры. Таким образом, отсутствие ветрозащиты приводит не только к выдуванию тепла из стен, но и к попаданию внутрь теплоизоляции атмосферной влаги (повышающейся во время дождя, снега или града). Для того чтобы избежать такой ситуации требуется обязательное применение ветрозащитных конструкций.

Использование ветрозащиты целесообразно в таких ситуациях, когда для утепления применяются материалы с низкой плотностью, к которым как раз и относятся минераловатные плиты. Дополнительными факторами является и высота ограждающих конструкций больше 7 м, скорость ветра выше 8 м/с (или 28 км/ч), а также наличие в обшивке зазоров толщиной больше 2 мм.

Специалистами рекомендовано устройство ветрозащиты для домов, расположенных в местности с повышенной влажностью воздуха – у реки, моря, озера или ленного массива.

Комментировать
0
23 просмотров
Это интересно

Русские никогда не жили в избах Занимательные факты
197 комментариев